• 제목/요약/키워드: Membrane-less microbial fuel cell

검색결과 6건 처리시간 0.017초

Power Density Enhancement of Anion-Exchange Membrane-Installed Microbial Fuel Cell Under Bicarbonate-Buffered Cathode Condition

  • Piao, Jingmei;An, Junyeong;Ha, Phuc Thi;Kim, Taeyoung;Jang, Jae Kyung;Moon3, Hyunsoo;Chang, In Seop
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.36-39
    • /
    • 2013
  • We introduce a high-performance microbial fuel cell (MFC) that was operated using a 0.1M bicarbonate buffer as the cathodic electrolyte. The MFC had a 136.42 $mW/m^2$ maximum power density under continuous feeding of 5 mM acetate as fuel. Results of the electrode potential measurements showed that the cathode potential of the bicarbonate-buffered condition was higher than the phosphate-buffered condition, although the phosphate condition had less interfacial resistance between the membrane and electrolyte. Therefore, we posit here that the increased power of the bicarbonate-buffered MFC may be caused by the higher cathode potential rather than by the interfacial membrane-electrolyte resistance.

Improved Performance of Microbial Fuel Cell Using Membrane-Electrode Assembly

  • PHAM THE HAl;JANG JAE KYUNG;MOON HYUN SOO;CHANG IN SEOP;KIM BYUNG HONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.438-441
    • /
    • 2005
  • A mediator-less microbial fuel cell (MFC) was used to determine the performance effects of a membrane­electrode assembly (MEA). The MFC with an MEA generated a higher current with an increased coulomb yield when compared to an MFC with a separate cathode. Less oxygen was diffused through an MEA than through a Nafion membrane. The MFC performance was improved with a buffer, although a high-strength buffer reduced the performance.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

미생물 연료 전지 적용을 위한 양성자 교환막에 대한 검토 (Review on Proton Exchange Membranes for Microbial Fuel Cell Application)

  • 김지민;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제30권4호
    • /
    • pp.213-227
    • /
    • 2020
  • 재생 불가능한 에너지 자원이 수년에 걸쳐 고갈됨에 따라, 재생 에너지 생산을 위한 보다 효과적인 방법에 대한 연구가 증가되었다. 연로전지 개발의 한 분야인 미생물 연료전지(MFC)는 이중 성능의 잠재력 덕분에 발전하였다. MFC는 박테리아와 같은 전극 감소 생물에서 전력을 모아서 전기 에너지를 생산한다. MFC는 폐수를 연료로 사용하여 에너지를 생산하고 폐수를 정화한다. 양성자 교환막(PEM)은 양극과 음극 챔버의 분리막으로, 양성자만 효과적으로 통과할 수 있게 하는 중요한 역할을 한다. Nafion은 MFC에 상업적으로 사용되는 PEM이지만 비용, 생산 시간, 양성자 전도성 차원에서 보완할 점들이 많다. 본 리뷰 논문에는 Nafion을 대체할 수 있는 새로 개발된 PEM 몇 가지를 논의하였다. 또한, PEM, 혼합 PEM 및 복합 PEM에 기반한 MFC를 요약하고자 한다.

미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산 (Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell)

  • 이유진;오유관;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).