Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11010

Power Density Enhancement of Anion-Exchange Membrane-Installed Microbial Fuel Cell Under Bicarbonate-Buffered Cathode Condition  

Piao, Jingmei (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
An, Junyeong (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Ha, Phuc Thi (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Taeyoung (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Jang, Jae Kyung (Energy and Environmental Engineering Division, National Institute of Agricultural Science, Rural Development Administration)
Moon3, Hyunsoo (School of Biological and Chemical Engineering, Yanbian University of Science and Technology)
Chang, In Seop (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.1, 2013 , pp. 36-39 More about this Journal
Abstract
We introduce a high-performance microbial fuel cell (MFC) that was operated using a 0.1M bicarbonate buffer as the cathodic electrolyte. The MFC had a 136.42 $mW/m^2$ maximum power density under continuous feeding of 5 mM acetate as fuel. Results of the electrode potential measurements showed that the cathode potential of the bicarbonate-buffered condition was higher than the phosphate-buffered condition, although the phosphate condition had less interfacial resistance between the membrane and electrolyte. Therefore, we posit here that the increased power of the bicarbonate-buffered MFC may be caused by the higher cathode potential rather than by the interfacial membrane-electrolyte resistance.
Keywords
Microbial fuel cell (MFC); anion-exchange membrane (AEM); electrochemical impedance spectrometry (EIS); electrode potential;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fan, Y. Z., H. Q. Hu, and H. Liu. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41: 8154-8158.   DOI   ScienceOn
2 Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type. Biosens. Bioelectron. 19: 607-613.   DOI   ScienceOn
3 Choi, J. H., J. S. Park, and S. H. Moon. 2002. Direct measurement of concentration distribution within the boundary layer of an ionexchange membrane. J. Colloid Interface Sci. 251: 311-317.   DOI   ScienceOn
4 D ugo cki, P., P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling. 2010. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J. Membr. Sci. 349: 369-379.   DOI   ScienceOn
5 Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel. Biosens. Bioelectron. 18: 327-334.   DOI   ScienceOn
6 Ji, E., H. Moon, J. Piao, P. T. Ha, J. An, D. Kim, et al. 2011. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength. Biosens. Bioelectron. 26: 3266-3271.   DOI   ScienceOn
7 Kim, J. R., S. A. Cheng, S. E. Oh, and B. E. Logan. 2007. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41: 1004-1009.   DOI   ScienceOn
8 Lee, J. Y., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191.   DOI   ScienceOn
9 Park, J. S., J. H. Choi, J. J. Woo, and S. H. Moon. 2006. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci. 300: 655-662.   DOI   ScienceOn
10 Pham, T. H., J. J. Jang, H. S. Moon, I. S. Chang and B. H. Kim. 2005. Improved performance of microbial fuel cell using membrane-electrode assembly. J. Microbiol. Biotechnol. 15: 438-441.
11 Rozendal, R. A., H. V. M. Hamelers, R. J. Molenkamp, and C. J. N. Buisman. 2007. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 41: 1984-1994.   DOI   ScienceOn