Browse > Article

Improved Performance of Microbial Fuel Cell Using Membrane-Electrode Assembly  

PHAM THE HAl (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
JANG JAE KYUNG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
MOON HYUN SOO (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
CHANG IN SEOP (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
KIM BYUNG HONG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.2, 2005 , pp. 438-441 More about this Journal
Abstract
A mediator-less microbial fuel cell (MFC) was used to determine the performance effects of a membrane­electrode assembly (MEA). The MFC with an MEA generated a higher current with an increased coulomb yield when compared to an MFC with a separate cathode. Less oxygen was diffused through an MEA than through a Nafion membrane. The MFC performance was improved with a buffer, although a high-strength buffer reduced the performance.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 25  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Eaton, A. D., L. S. Clesceri, and A. E. Greenberg. 1995. Standard Method For the Examination of Water and Wastewater. pp. 5- 14. 19th Ed. American Public Health Association, Washington D.C., U.S.A
2 Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less Microbiol fuel cell. Biosens. Bioelectron. 18: 327- 334   DOI   ScienceOn
3 Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less Microbiol fuel cell. Biotechnol. Lett. 25: 541-545   DOI   ScienceOn
4 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less Microbiol fuel cell using a metal reducing bacterium, Shevcaneila putrejaciens. Enzyme Microb. Technol. 30: 145- 152   DOI   ScienceOn
5 Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrijaciens. J. Microbiol. Biotechnol. 9: 127-131
6 Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58- 61   DOI   ScienceOn
7 Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A Microbiol fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357- 1361   DOI   ScienceOn
8 Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of Microbiol community generating electricity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681   DOI   ScienceOn
9 Park, D. H. and J. G. Zeikus, 2003. Improved fuel cell and electrode designs for producing electricity from Microbiol degradation. Biotechnol. Bioeng. 81: 348- 355   DOI   ScienceOn
10 Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geohacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548- 1555   DOI   ScienceOn
11 Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Cathode reaction in a mediator-less Microbiol fuel cell with graphite or platinum-coated graphite as the cathode. J. Microbiol. Biotechnol. 14: 324- 329
12 Larminie, J. and A. Dicks. 2000. Fuel Cell Systems Explained, pp. 61- 107. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex, U.K
13 Jang J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. S. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less Microbiol fuel cell. Process Biochem. 39: 1011-1017