DOI QR코드

DOI QR Code

Power Density Enhancement of Anion-Exchange Membrane-Installed Microbial Fuel Cell Under Bicarbonate-Buffered Cathode Condition

  • Piao, Jingmei (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • An, Junyeong (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Ha, Phuc Thi (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Taeyoung (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Jang, Jae Kyung (Energy and Environmental Engineering Division, National Institute of Agricultural Science, Rural Development Administration) ;
  • Moon3, Hyunsoo (School of Biological and Chemical Engineering, Yanbian University of Science and Technology) ;
  • Chang, In Seop (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2012.11.06
  • Accepted : 2012.11.20
  • Published : 2013.01.28

Abstract

We introduce a high-performance microbial fuel cell (MFC) that was operated using a 0.1M bicarbonate buffer as the cathodic electrolyte. The MFC had a 136.42 $mW/m^2$ maximum power density under continuous feeding of 5 mM acetate as fuel. Results of the electrode potential measurements showed that the cathode potential of the bicarbonate-buffered condition was higher than the phosphate-buffered condition, although the phosphate condition had less interfacial resistance between the membrane and electrolyte. Therefore, we posit here that the increased power of the bicarbonate-buffered MFC may be caused by the higher cathode potential rather than by the interfacial membrane-electrolyte resistance.

Keywords

References

  1. Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type. Biosens. Bioelectron. 19: 607-613. https://doi.org/10.1016/S0956-5663(03)00272-0
  2. Choi, J. H., J. S. Park, and S. H. Moon. 2002. Direct measurement of concentration distribution within the boundary layer of an ionexchange membrane. J. Colloid Interface Sci. 251: 311-317. https://doi.org/10.1006/jcis.2002.8407
  3. D ugo cki, P., P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling. 2010. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J. Membr. Sci. 349: 369-379. https://doi.org/10.1016/j.memsci.2009.11.069
  4. Fan, Y. Z., H. Q. Hu, and H. Liu. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41: 8154-8158. https://doi.org/10.1021/es071739c
  5. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel. Biosens. Bioelectron. 18: 327-334. https://doi.org/10.1016/S0956-5663(02)00110-0
  6. Ji, E., H. Moon, J. Piao, P. T. Ha, J. An, D. Kim, et al. 2011. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength. Biosens. Bioelectron. 26: 3266-3271. https://doi.org/10.1016/j.bios.2010.12.039
  7. Kim, J. R., S. A. Cheng, S. E. Oh, and B. E. Logan. 2007. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41: 1004-1009. https://doi.org/10.1021/es062202m
  8. Lee, J. Y., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191. https://doi.org/10.1016/S0378-1097(03)00356-2
  9. Park, J. S., J. H. Choi, J. J. Woo, and S. H. Moon. 2006. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci. 300: 655-662. https://doi.org/10.1016/j.jcis.2006.04.040
  10. Pham, T. H., J. J. Jang, H. S. Moon, I. S. Chang and B. H. Kim. 2005. Improved performance of microbial fuel cell using membrane-electrode assembly. J. Microbiol. Biotechnol. 15: 438-441.
  11. Rozendal, R. A., H. V. M. Hamelers, R. J. Molenkamp, and C. J. N. Buisman. 2007. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 41: 1984-1994. https://doi.org/10.1016/j.watres.2007.01.019

Cited by

  1. Production of Acetate from Carbon Dioxide in Bioelectrochemical Systems Based on Autotrophic Mixed Culture vol.23, pp.8, 2013, https://doi.org/10.4014/jmb.1304.04039
  2. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode vol.123, pp.None, 2013, https://doi.org/10.1016/j.watres.2017.06.050
  3. Architectural adaptations of microbial fuel cells vol.102, pp.22, 2013, https://doi.org/10.1007/s00253-018-9339-0
  4. Assessment of expanded polystyrene as a separator in microbial fuel cell vol.40, pp.16, 2013, https://doi.org/10.1080/09593330.2018.1435740