• Title/Summary/Keyword: Membrane surface

Search Result 1,849, Processing Time 0.027 seconds

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • Arahman, Nasrul;Mulyati, Sri;Lubis, Mirna Rahmah;Razi, Fachrul;Takagi, Ryosuke;Matsuyama, Hideto
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.355-365
    • /
    • 2016
  • The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation (금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • Total resistance of membrane in a micro-filtration system using a metal membrane was mainly attributed to the permeate resistance of cake layer($R_c$), which was formed by deposited particles from the physico-chemical interactions of solids on membrane surface. Intermittent back ozonation was highly effective than the air backwashing for fouling reduction. As far the operational effect, under same ozone injection, the increase of gas flow-rate was more favorable than the increase of injection time far the recovery of permeation flux. As the filtration time was longer, the effect of flux recovery by intermittent back-ozonation decreased. Therefore, it is preferable to operate membrane cleaning before the foulant is consolidated on membrane surface.

Lactobacillus plantarum 299v Surface-Bound GAPDH: A New Insight Into Enzyme Cell Walls Location

  • Saad, N.;Urdaci, M.;Vignoles, C.;Chaignepain, S.;Tallon, R.;Schmitter, J.M.;Bressollier, P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1635-1643
    • /
    • 2009
  • The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.

Scale Formation in the Concentrate Compartment of an Electrodialysis Stack During Desalination of Brackish Water (염수의 탈염을 위한 전기투석 농축실에서의 스케일 형성)

  • Moon Seung-Hyeon;Yang Jung-Hoon;Yeon Kyeong-Ho
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.175-186
    • /
    • 2005
  • An electrodialysis process was operated for a long period to investigate the scale formation on the membrane surface. During the desalination process, concentration of $Ca^{2+}$ and $SO_4^{2-}$ ions increased continuously in the concentrate compartment and eventually caused precipitation on the cation exchange membrane (Neosepta CMX) surface. During the initial scale formation, the performance of the process and membrane characteristics did not show significant changes, except the decrease in limiting current density of the CMX membrane occurring due to increase in the salt concentration in the concentrate compartment. Eventually, the limiting current density of the fouled CMX membrane dropped significantly to $300\;A/m^2$ as water dissociation occurred in the CMX membrane. It was concluded that the fouling was caused mainly by the scale formation on the cation exchange membrane surface in the concentrate and consequent water dissociation. Also the scale formation was reasonably predicted by the solubility of $CaSO_4$.

Modification of ultrafiltration membranes with carbon nanotube buckypaper for fouling alleviation

  • Guo, Jin;Liu, Jian-Hong;Wang, Li-Ying;Liu, Hong
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The modification of ultrafiltration membranes with carbon nanotube (CNT) buckypaper on fouling control was investigated. Two types of commercially available flat-sheet membranes were used: PS35 and PES900C/D (PES) (the PS35 membranes were hydrophilic with a molecular weight cutoff of 20 kDa, and the PES membranes were hydrophobic with a molecular weight cutoff of 20 kDa). The CNT buckypaper modified ultrafiltration membranes were prepared by filtering a CNT suspension through the flat-sheet membrane in a dead-end ultrafiltration unit. After modification, the pure water flux of PES was significantly increased, while the pure water flux of PS35 was decreased. The properties of the CNT modified membranes were also investigated. Considering the antifouling properties, pure water flux of the modified membrane, and the stability of CNT buckypaper layer on the membrane surface, ethanol solution with a concentration of 50 wt.%, multi-walled carbon nanotubes (MWCNTs) with a larger diameter (30-50 nm), and the CNT loading with $7.5g/m^2$ was selected. The CNT buckypaper on the surface of ultrafiltration membranes can trap the pollutants in sewage effluent and prevent them reaching the surface of virgin membranes. Water quality analysis showed that the effluent quality of the modified membrane was obviously improved. The removal efficiency of humic acid and protein-like matters by the modified membrane was significant. These results indicate the potential application of the CNT buckypaper layer modified membranes in the field of wastewater reclaim.

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process (폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화)

  • Park, Chul Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.