• Title/Summary/Keyword: Membrane separation method

Search Result 272, Processing Time 0.02 seconds

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties (지환족 다이안하이드라이드를 이용한 용해성 폴리이미드 공중합체 합성 및 메탄/이산화탄소 분리특성)

  • Park, Chae Young;Lee, Yongtaek;Kim, Jeong Hoon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.

Electrochemical Characteristics of Electrolyte Membrane for Hydrogen Production in High Temperature Electrolysis (고온 수증기 전해 수소제조를 위한 전해질 막의 전기화학적 특성 고찰)

  • Choi Ho-Sang;Son Hyo-Seok;Sim Kyu-Sung;Hwang Gab-Jin
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • YSZ (yttria-stabilized zirconia) determined with an electrolyte that analyzed thermal stability along sintering condition and an electric characteristic. As sintering temperature increases by SEM, grain grows and it showed that pore decreases relatively. and confirmed effect by grain size. It evaluated that particle internal resistance and electric performance by resistance in an electrolyte and electricity conductivity measurement through ac impedance measurement in temperature of $800\~1000^{\circ}C$ in 2-probe method In order to recognize an electric characteristic. In dry process and wet process, density was each 6.13, 6.25 $g/cm^3$ and the relative density was each 98, 99$\%$ when sintering condition is $1400^{\circ}C$.

Preparation of poly(vinyl alcohol)-coated Composite Nanofiltration Membranes on Various Support Membranes (다양한 지지체 분리막 위에 poly(vinyl alcohol)이 코팅된 나노복합막의 제조)

  • Lee Kew-Ho;Kim In-Chul
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.34-43
    • /
    • 2005
  • The poly(vinyl alcohol) (PVA)-based thin film composite nanofiltration (NF) membranes were prepared by coating polysulfone ultrafiltration membranes, sulfonated polyethersulfone and polyamide NF membranes with aqueous PVA solution by a pressurizing method. The PVA was cross-linked with aqueous glutaraldehyde solution. The NF membranes coated with a very low concentration of PVA on all the support membranes was successfully prepared. With increasing the hydrophilicity of the support membranes, the water flux increased. Especially, ζ-potential of negatively charged polyamide NF membrane was reduced by coating the membrane with PVA. A fouling experiment was carried out with positively charged surfactant, humic acid, complex of humic acid and calcium ion and bovine serum albumin. A non-coated polyamide NF membrane was significantly fouled by various foulants. The fouling process when using humic acid and protein occurred at the isoelectric point. There was severe fouling when using humic acid and adding bivalent cations. By coating the polyamide NF membrane with aqueous PVA solution, fouling was reduced. The polyamide NF membrane coated with PVA was resistant to the acidic and basic solution.

Development of Ceramic Hollow Fiber Membrane Contactor Modules for Carbon Dioxide Separation (이산화탄소 분리용 세라믹 중공사 접촉막 모듈 기술 개발)

  • Lee, Hong Joo;Che, Jin Woong;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Porous $Al_2O_3$ hollow fiber membranes were successfully prepared by dry-wet spinning/sintering method. The SEM image shows that the $Al_2O_3$ hollow fiber membrane consists mostly of sponge pore structure. The contact angle and the breakthrough pressure were $126^{\circ}$ and 1.91 bar, respectively. This results indicate that the $Al_2O_3$ hollow fiber membranes were successfully modified to hydrophobic surface. The hydrophobic modified $Al_2O_3$ hollow fiber membranes were assembled into a membrane contactor system to separate $CO_2$ from a model gas mixture of the flue gas at elevated gas velocity. The $CO_2$ absorption flux was enhanced when the gas velocity increased from $1{\times}10^{-3}$ to $6{\times}10^{-3}$ m/s. Whereas the $CO_2$ absorption flux was decreased with the number of hollow fiber membrane of a module because of the concentration polarization. Furthermore, we developed an lab-scale $Al_2O_3$ hollow fiber membrane contactor modules and their system (i.e., $CO_2$ absorption using the $Al_2O_3$ membrane and monoethanolamine (MEA)) that could dispose of over $0.02Nm^3/h$ mixture gas (15% $CO_2$) with the removal efficiency higher than 95%. The results can be useful in a field of the membrane contactor for $CO_2$ separation, helping to design and extend a equipment.

The Removal of Arsenic from Contaminated Water using a Hybrid Membrane Process.

  • Legault, A.S.;Trembaly, A.Y.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.93-104
    • /
    • 1997
  • The objective of this study is to develop a method to reduce arsenic concentrations in contaminated water. This work is also aimed at increasing the specificity of membrane separation processes. Arsenic in contaminated waters is often present in the form of negatively charged oxyanions. These are relatively small molecules which cannot be separated directly by ultrafiltration. Oxyanions can be captured by polyelectrolytes and separated by ultrafiltration. Results will be presented on the use of two polyelectrolytes; polyethylenimine (PEI) and poly-diallyl dimethyl ammonium chloride (DADMAC) at various feed concentrations. A semi-continuous process utilizing PEI in a circulation loop was tested. The restfits indicate that better than 99.6 % recovery (permeate concentration < 0.001 $\mu$g/L) can be achieved based on an initial arsenic concentration of 300 $\mu$g/L. The results indicate that this treatment method is suitable as a main treatment process for drinking water or a polishing step after arsenic precipitation.

  • PDF

Application of Membrane Technology in Japan

  • Minami, Katsuyoshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.58-73
    • /
    • 1995
  • Membrane filtration is a promising technology for efficient solid/liquid separation in water purification. In FY 1991, the Ministry of Health and Welfare, Japanese Government launched a comprehensive research project "MAC 21" for development of membrane technology and its application to public water supply. The project was conducted by the Water Purification Process Association (WPPA), under the supervision of the Institute of Public Health. By the research project from FY 1991 to FY 1993, we confirmed that microfiltration (MF)/ultrafiltration (UF) technology was applicable to water purification and MF/UF was a effective method for the removal of such contaminants as particulate matter and coliforms. The Guideline Committee organized under the Technical Committee prepared a the guidelines on application of membrane system to small-scale public water supplies, based on the results as written above. The guidelines has been published in Dec., 1994 by WPPA.4 by WPPA.

  • PDF

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

Review on Graphene Oxide-based Nanofiltration Membrane (산화그래핀 기반 나노여과막의 최신 연구동향)

  • Kim, Dae Woo
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.130-139
    • /
    • 2019
  • Various two-dimensional nano materials such as graphene, zeolite, and metal-organic framework have been utilized to develop an ultra-thin high-performance membrane for water purification, gas separation, and so on. Particularly, in the case of graphene oxide, synthesis methods and thin film coating techniques have been accumulated and established since early 2000s, therefore graphene oxide has been rapidly applied to membrane field. The multi-layered graphene oxide thin film can filter molecules separately by the molecular sieving of interlayer spacing between adjacent layers, and it is also possible to separate various materials depending on the surface functional groups or the degree of interaction to intercalated materials. This review mainly focuses on the nanofiltration application of graphene oxide. The major factors affecting the separation performance of graphene oxide membrane in solvent are summarized and other technical elements required for the commercialization of graphene oxide membranes will be discussed including stability issue and fabrication method.

Liquid Membrane Permeation of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction

  • Kim, Su-Jin;Kang, Ho-Cheol;Kim, Yong-Shik;Jeong, Hwa-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1143-1148
    • /
    • 2010
  • We investigated the separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction comprising four kinds of NHC [indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)], three kinds of bicyclic aromatic compound (BAC) [1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), dimethylnaphthalene (DMN) mixture with ten structural isomers (DMNs; regarded as one component)], biphenyl (Bp) and phenyl ether (Pe) by liquid membrane permeation (LMP). A batch-stirred tank was used as the permeation unit. An aqueous solution of saponin and n-hexane were used as the liquid membrane and the outer oil phase, respectively. Yield and selectivity of individual NHC was much larger than that of BAC, Bp and Pe. Increasing the initial mass fraction of the saponin to the membrane solution ($C_{sap,0}$) and the initial volume fraction of O/W emulsion to total liquid in a stirred tank (${\phi}_{OW,0}$) resulted in deteriorating the yield of individual NHC, but increasing the stirring speed (N) resulted in improving the yield of each NHC. With increasing $C_{sap,0}$, the selectivity of each NHC based on DMNs increased. Increasing ${\phi}_{OW,0}$ and N resulted in decreasing the selectivity of individual NHC based on DMNs. At an experimental condition fixed, the sequence of the yield and selectivity in reference to DMNs for each NHC was Q > Qu = iQ > In. Furthermore, we compared LPM method with methanol extraction method in view of the separation efficiency (yield, selectivity) of NHC.

Study on the Pervaporation Characteristic of Water-alcohol Mixtures through Aromatic Polyetherimide Membranes : I. Pervaporation through Structure Change of Symmetric Dense and Asymmetric Structure Membranes (방향계 폴리에테르이미드막의 물-알콜 혼합액의 투과증발 특성에 관한 연구 : I.구조 변화에 따른 투과증발)

  • Kim, S.G.;Jegal, J.G.;Lee, K.-H.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.945-953
    • /
    • 1997
  • Aromatic polyetherimide membranes were prepared by dry/wet phase inversion method and investigated regarding the pervaporation characteristic of water-alcohol mixtures by using the permselective property of imide group and the structure modification of skin layer of the membrane. The membrane selectivity increased with the reaction time of surface-modification, to some extent, and the density of top layer tends to increases with increasing the reaction time. In the case of dense membrane, the separation factor was 160 and 2000 for 90wt% ethanol mixture and 90wt% isopropanol solution, respectively, which implies that aromatic polyetherimide has a high permselectivity. The temperature dependence of permeation flux seems to follow an Arrhenius type at the temperature range of ($40^{\circ}C-70^{\circ}C$).

  • PDF