Preparation of poly(vinyl alcohol)-coated Composite Nanofiltration Membranes on Various Support Membranes

다양한 지지체 분리막 위에 poly(vinyl alcohol)이 코팅된 나노복합막의 제조

  • Lee Kew-Ho (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim In-Chul (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology)
  • 이규호 (한국화학연구원 분리막다기능소재연구센터) ;
  • 김인철 (한국화학연구원 분리막다기능소재연구센터)
  • Published : 2005.03.01

Abstract

The poly(vinyl alcohol) (PVA)-based thin film composite nanofiltration (NF) membranes were prepared by coating polysulfone ultrafiltration membranes, sulfonated polyethersulfone and polyamide NF membranes with aqueous PVA solution by a pressurizing method. The PVA was cross-linked with aqueous glutaraldehyde solution. The NF membranes coated with a very low concentration of PVA on all the support membranes was successfully prepared. With increasing the hydrophilicity of the support membranes, the water flux increased. Especially, ζ-potential of negatively charged polyamide NF membrane was reduced by coating the membrane with PVA. A fouling experiment was carried out with positively charged surfactant, humic acid, complex of humic acid and calcium ion and bovine serum albumin. A non-coated polyamide NF membrane was significantly fouled by various foulants. The fouling process when using humic acid and protein occurred at the isoelectric point. There was severe fouling when using humic acid and adding bivalent cations. By coating the polyamide NF membrane with aqueous PVA solution, fouling was reduced. The polyamide NF membrane coated with PVA was resistant to the acidic and basic solution.

Poly(vinyl alcohol) (PVA)이 폴리술폰 한외여과 막, 술폰화된 폴리에테르술폰, 폴리아미드 나노 막 위에 코팅된 나노 복합막을 가압법에 의해서 제조되었다. PVA는 글루터알데하이드 수용액으로 가교되었다. 모든 지지층위에 PVA 희박용액이 성공적으로 코팅되어 나노복합막이 제조되었다. 지지막 위의 친수화도가 높아짐에 따라 수투과 유량이 증가하였다. 특히 음하전을 띠는 폴리아미드 나노 복합막의 제타전위는 PVA로 코팅함으로서 감소되었다. 막 오염 실험은 양이온을 띠는 계면활성제, 휴민산, 휴민산과 칼슘이온 복합체 및 bovine serum albumin을 사용하여 실행하였다. PVA로 코팅되지 않은 폴리아미드 나노복합막은 각각의 오염물질에 의해서 심하게 오염되었다. 휴민산과 단백질에 의한 오염은 오염물질의 등전점에서 가장 심하게 발생하였다. 휴민산에 이가 양이온을 첨가함으로서 오염이 심각하게 일어났다. PVA 수용액으로 폴리아미드 나노 복합막을 코팅함으로서 막 오염이 감소되었다. PVA로 코팅된 폴리아미드 나노 복합막은 산, 염기용액에 대해 저항성을 보였다.

Keywords

References

  1. E. M. Vrijenhoek, S. K. Hong, and M. Elimelech, 'Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes', J. Membrane Sci., 188, 115 (2001) https://doi.org/10.1016/S0376-7388(00)00586-X
  2. M. Manttari, L. Puro, J. Nuorti1a-Jokinen, and M. Nystrom, 'Fouling effects of polysaccharides and humic acid in nanofiltration', J. Membrane Sci., 165, 1 (2000) https://doi.org/10.1016/S0376-7388(99)00215-X
  3. C. R Bouchard, J. Jolicoeur, and P. Kouadio, 'Study of humic acid adsorption on nanofiltration membranes by contact angle measurements', Can. J. Chem. Eng., 75(2), 339 (1997)
  4. R. J. Petersen, 'Composite reversis osmosis and nanofiltration membranes', J. Membrane Sci., 83, 81 (1993)
  5. R Y. M. Huang and C. K Yeom, 'Pervaporation separation of aqueous mixtures using cross-linked poly(vinyl alcohol) (PVA). II. Permeation of ethanolwater mixtures', J. Membrane Sci., 51, 273 (1990)
  6. K. Lang, S. Sourirajan, T. Matsuura, and G. Chowdhury, 'A study on the preparation of PVA thin film composite membranes and reverse osmosis testing', Desalination, 104, 185 (1996)
  7. J. G. Jegal, N. W. Oh, D. S. Park, and K-H. Lee, 'Characterization of the nanofiltration composite membranes based on PYA and sodium alginate', J. Appl. Polym. Sci., 79, 2471 (2001)
  8. J. G. Jegal and K-H. Lee, 'Nanofiltration membranes based on PVA and ionic polymers', J. Appl. Polym. Sci., 72, 1755 (1999)
  9. J. G. Jegal, N. W. Oh, and K-H. Lee, 'Preparation and characterization of PV A/SA composite nanofiltration membranes', J. Appl. Polym. Sci., 77, 347 (2000)
  10. E. Immelman, R D. Sanderson, E. P. Jacobs, and A. J. Van Reenen, 'PVA gel sub-layers for reverse osmosis membranes. II. Insolubilization by crosslinking with poly(methyl vinyl ether-alt-maleic anhydride', Desalination, 94, 37 (1993) https://doi.org/10.1016/0011-9164(93)80153-E
  11. M. Nystrom, K Ruohomki, and L. Kaipia, 'Humic acid as a fouling agent in filtration', Desalination, 106, 79 (1996)
  12. S. Hong and M. Elimelech, 'Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes', J. Membrane Sci., 132, 159 (1997)
  13. A. E. Childress and M. Elimelech, 'Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes', J. Membrane Sci., 119, 253 (1996)
  14. A. E. Childress and S. S. Deshmukh, 'Effect of humic substances and anionic surfactants on the surface charge and performance of reverse osmosis membranes', Desalination, 118, 167 (1998)
  15. A. I. Schafer, A. G. Fane, and T. D. Waite, 'Nanofiltration of natural organic matter: Removal, fouling and the influence of multivalent ions', Desalination, 118, 109 (1998)
  16. S.-H. Yoon, C.-H. Lee, K.-J. Kim, and A. G. Fane, 'Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production', Water Research, 32(7), 2180 (1998)
  17. J. Cho, G. Amy, J. Pelligrino, and Y. Yoon, 'Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes and foulants characterization', Desalination, 118, 101 (1998)
  18. C. Martin-Orue, S. Bouhallab, and A. Garem, 'Nanofiltration of amino acid and peptide solutions: mechanism of separation', J. Membrane Sci., 142, 255 (1998)