• 제목/요약/키워드: Membrane process

검색결과 2,209건 처리시간 0.022초

응집 플록 성장률 측정기를 이용한 멤브레인 공정의 전처리 응집공정 평가 (Evaluations of Coagulation Process for Membrane Pre-treatment using Floc Growth Rate Analyzer)

  • 손희종;김상구;김도환;강소원;최영익
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.231-238
    • /
    • 2016
  • In this study, we have investigated to find optimal pre-treatment flocculation condition by analyzing the floc growth rate with mixing conditions and the membrane permeation flux for pre-treatment step of the membrane process. The higher mixing intensity showed a constant floc size index (FSI) values, and lower mixing intensity increased the degree of dispersion of the FSI values. Results of comparing the distribution characteristics of the FSI value and the permeation flux were more effective in increasing flux when the FSI values were 0.2 or higher. The degree of dispersion of FSI was relatively large in 40 rpm mixing condition compared to 120 rpm. In 40 rpm mixing condition, it decreased the permeation flux compared to 120 rpm because various sizes of flocs were distributed. Coagulation-UF membrane process enhanced 30%~40% of the flux rate compare to UF alone process, and the coagulation-MF process increased up to 5% of the flux rate compare to MF alone process. Pre-treatment, that is, coagulation process, has been found to be less effects on relatively larger pore size for MF membrane. For UF membrane, the flux was a little bit same when applying only the rapid mixing process or rapid mixing with slow mixing processes together. In case of MF membrane, the flux was improved when rapid mixing process applied with slow mixing process together.

Photodegradation stability study of PVDF- and PEI-based membranes for oily wastewater treatment process

  • Ong, C.S.;Lau, W.J.;Al-anzi, B.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • 제8권3호
    • /
    • pp.211-223
    • /
    • 2017
  • In this work, an attempt was made to compare the effects of UV irradiation on the intrinsic and separation properties of membranes made of two different polymeric materials, i.e., polyvinylidene fluoride (PVDF) and polyetherimide (PEI). The changes on membrane structural morphologies and chemical characteristics upon UV-A exposure (up to 60 h) were studied by FESEM and FTIR, respectively. It was found that cracks and fractures were detected on the PVDF-based membrane surface when the membrane was exposed directly to UV light for up to 60 h. Furthermore, the mechanical strength and thermal stability of irradiated PVDF-based membrane was reported to decrease with increasing UV exposure time. The PEI membrane surface meanwhile remained almost intact throughout the entire UV irradiation process. Filtration experiments showed that the permeate flux of UV-irradiated PVDF membrane was significantly increased from approximately 11 to $16L/m^2.h$ with increasing UV exposure time from zero to 60 h. Oil rejection meanwhile was decreased from 98 to 85%. For the PEI-based membrane, oil rejection of >97% was recorded and its overall structural integrity was marginally affected throughout the entire UV irradiation process. The findings of this work showed that the PEI-based membrane should be considered as the host for photocatalyts incorporation if the membrane was to be used for UV-assisted wastewater treatment process.

LNG-FPSO용 막-흡수 하이브리드 공정 전산모사 (Simulation of Membrane-absorption Hybrid Process for LNG-FPSO)

  • 민광준;조하빈;김진국;강상욱
    • 멤브레인
    • /
    • 제28권2호
    • /
    • pp.90-95
    • /
    • 2018
  • LNG-FPSO 산성가스 제거 공정에서 막-흡수 하이브리드 시스템 적용을 위한 설계를 수행하였다. 상용 공정 모사기인 Promax version 4.0을 이용하여 아민 흡수 공정과 하이브리드 공정의 산성가스 제거 성능을 비교하였다. 전사 모사 결과를 통해 하이브리드 공정은 아민 용매 순환량, 에너지 소모량, 장치 사이즈가 아민 흡수 공정에 비하여 작아지는 것을 확인할 수 있었다. 따라서, 컴팩트한 장치 사이즈와 에너지 절감 공정인 하이브리드 공정은 LNG-FPSO 천연가스 전처리 공정에 적용하기에 적합한 방안임을 확인하였다.

Reuse potential of spent RO membrane for NF and UF process

  • Ng, Zhi Chien;Chong, Chun Yew;Sunarya, Muhammad Hamdan;Lau, Woei Jye;Liang, Yong Yeow;Fong, See Yin;Ismail, Ahmad Fauzi
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.323-331
    • /
    • 2020
  • With the increasing demand on reverse osmosis (RO) membranes for water purification worldwide, the number of disposed membrane elements is expected to increase accordingly. Thus, recycling and reuse of end-of-life RO membranes should be a global environmental action. In this work, we aim to reuse the spent RO membrane for nanofiltration (NF) and ultrafiltration (UF) process by subjecting the spent membrane to solvent and oxidizing solution treatment, respectively. Our results showed that solvent-treated RO membrane could perform as good as commercial NF membrane by achieving similar separation efficiencies, but with reduced water permeability due to membrane surface fouling. By degrading the polyamide layer of RO membrane, the transformed membrane could achieve high water permeability (85.6 L/㎡.h.bar) and excellent rejection against macromolecules (at least 87.4%), suggesting its reuse potential as UF membrane. More importantly, our findings showed that in-situ transformation on the spent RO membrane using solvent and oxidizing solution could be safely conducted as the properties of the entire spiral wound element did not show significant changes upon prolonged exposure of these two solutions. Our findings are important to open up new possibilities for the discarded RO membranes for reuse in NF and UF process, prolonging the lifespan of spent membranes and promoting the sustainability of the membrane process.

DME 생산공정에서 복합막을 이용한 이산화탄소 제거공정 전산모사 (A Study on Carbon Dioxide Removal Process Using Composite Membrane in DME Production Process)

  • 노상균
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4698-4706
    • /
    • 2014
  • 본 연구에서는 디메틸에테르(dimethyl ether) 생산 공정에 포함된 이산화탄소 제거공정에서 이산화탄소 제거 방법으로 복합막(composite membrane)을 사용하는 공정에 대해 공정구성과 모사를 수행하였다. 복합막은 (주)에어레인에서 제조한 PEI-PDMS(polyetherimide-polydimethyl siloxane) 복합막을 대상으로 하였으며 복합막 공정을 모델링하기 위해서 상용성 화학공정 모사기인 Invensys 사의 PRO/II with PROVISION 9.2를 사용하였다. 그리고 복합막 공정을 모사하기 위해 필요한 각 순수성분들의 투과도 상수는 (주)에어레인에서 수행한 실험 데이터를 회귀분석 하여 새롭게 결정 하였다. 결국 실험을 통해 얻은 투과도 상수와 상용성 화학공정 모사기를 활용하여 이산화탄소를 제거하기 위한 복합막 공정을 구성하고 제거에 필요한 분리막 면적과 Utility 비용을 도출하였다.

이온교환막을 통한 이온분리에 대한 총설 (A Review Based on Ion Separation by Ion Exchange Membrane)

  • 살센벡 아샐;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제32권4호
    • /
    • pp.209-217
    • /
    • 2022
  • 이온교환막(IEM)은 다양한 종류의 단가이온과 다가이온을 분리하기 위해 사용되는 막의 한 종류로, 배터리, 연료전지, 염화물-알칼리 공정 등에 사용된다. 이온교환막을 통한 막분리는 전기 구동력을 기반으로 한 녹색 분리 방식이며, 해수 담수화와 수처리 분야에서 떠오르는 방식이다. 전기투석(ED)은 양이온과 음이온이 이온교환막을 따라 선택적으로 이동하는 기술이다. 음이온 교환막(AEM)은 전기투석의 중요한 구성 요소 중 하나이며, 공정 효율을 향상시키는 데 상당한 역할을 한다. 이온교환막에 가교결합을 도입하면 자유 부피의 감소로 인해 이온 선택 분리 성능이 향상된다. 역삼투(RO) 공정을 통한 해수 담수화 시 RO 농축수에 용해된 염이 다량 존재한다. 따라서 1가 양이온 선택막으로 구성된 전기투석 공정은 오염을 줄이고 막 플럭스를 개선한다. 이 검토는 전기투석, 음이온 교환막, 그리고 양이온 교환막의 세 부분으로 나뉜다.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

An Overview of NRC Projects in Wastewater Treatment by Membrane Processes

  • Kumar, Ashwani
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 제5회 하계 Workshop (97 한,카 국제공동 Workshop, 고도 수처리를 위한 막분리 공정)
    • /
    • pp.55-66
    • /
    • 1997
  • A brief introduction to NRC's research activities will be given with special emphasis on membrane processes. NIRC's membrane research group has been involved in many membrane research projects with industrial clients in various sectors of the industry. These projects generally were focused on using membranes for treating industrial wastewater streams for recycling process water, recovering of valuable components and meeting the environmental regulations. The group looked in to various aspects of process development dealing with membrane performance evaluation, optimization of operational parameters, determination of fouling propensities of membranes and simple cost analyses in some cases. Case studies dealing with process development for effluent treatment for the pulp & paper, mining & mineral processing and poultry processing industries will be discussed briefly.

  • PDF

역삼투막을 이용한 해수담수화 플랜트에서 전처리 공정 기술 (An Overview of the Pretreatment Processes in Seawater Desalination Plants using Reverse Osmosis Membranes)

  • 안창훈;이원일;윤제용
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.811-823
    • /
    • 2009
  • Seawater desalination process using a reverse osmosis (RO) membrane has been considered as one of the most promising technologies in solving the water scarcity problems in many arid regions around the world. To protect RO membrane in the process, a thorough understanding of the pretreatment process is particularly needed. Seawater organic matters (SWOMs) may form a gel layer on the membrane surface, which will increase a concentration polarization. As the SWOMs can be utilized as a substrate, membrane biofouling will be progressed on the RO membrane surface, resulting in the flux decline and increase of trans-membrane pressure drop and salt passage. In the middle of disinfection, an optimal chlorine dosage and neutralizer (sodium bisulfite, SBS) should be practiced to prevent oxidizing the surface of RO membranes. Additional fundamental research including novel non-susceptible biofouling membranes would be necessary to provide a guide line for the proper pretreatment process.