Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.4.209

A Review Based on Ion Separation by Ion Exchange Membrane  

Assel, Sarsenbek (Nano Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.32, no.4, 2022 , pp. 209-217 More about this Journal
Abstract
Ion exchange membrane (IEM) is an important class of membrane applied in batteries, fuel cells, chloride-alkali processes, etc to separate various mono and multivalent ions. The membrane process is based on the electrically driven force, green separation method, which is an emerging area in desalination of seawater and water treatment. Electrodialysis (ED) is a technique in which cations and anions move selectively along the IEM. Anion exchange membrane (AEM) is one of the important components of the ED process which is critical to enhancing the process efficiency. The introduction of cross-linking in the IEM improves the ion-selective separation performance due to the reduction of free volume. During the desalination of seawater by reverse osmosis (RO) process, there is a lot of dissolved salt present in the concentrate of RO. So, the ED process consisting of a monovalent cation-selective membrane reduces fouling and improves membrane flux. This review is divided into three sections such as electrodialysis (ED), anion exchange membrane (AEM), and cation exchange membrane (CEM).
Keywords
electrodialysis; anion exchange membrane; cation exchange membrane; reverse osmosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Wang, N. Pan, J. Liao, H. Ruan, A. Sotto, and J. Shen, "Effect of microstructures of side-chain-type anion exchange membranes on mono-/bivalent anion permselectivity in electrodialysis", ACS Appl. Polymer Mat., 3, 342 (2021).
2 H. Yan, W. Li, Y. Zhou, M. Irfan, Y. Wang, C. Jiang, and T. Xu, "In-situ combination of bipolar membrane electrodialysis with monovalent selective anion-exchange membrane for the valorization of mixed salts into relatively high-purity monoprotic and diprotic acids", Membr., 10, 1 (2020).
3 M. Irfan, Y. Wang, and T. Xu, "Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity", Chem. Eng. J., 383, 123171 (2020).
4 W. Jiang, L. Lin, X. Xu, H. Wang, and P. Xu, "Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis", J. Membr. Sci., 572, 545 (2019).
5 L. Gomez-Coma, V. M. Ortiz-Martinez, J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019).
6 V. Kravtsov, I. Kulikova, S. Mikhaylin, and L. Bazinet, "Alkalinization of acid whey by means of electrodialysis with bipolar membranes and analysis of induced membrane fouling", J. Food Eng., 277, 109891 (2020).
7 M. Reig, C. Valderrama, O. Gibert, and J. L. Cortina, "Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalent-divalent ions separation and acid and base production", Desalination, 399, 88 (2016).
8 X. Zhang, C. Ye, K. Pi, J. Huang, M. Xia, and A. R. Gerson, "Sustainable treatment of desulfurization wastewater by ion exchange and bipolar membrane electrodialysis hybrid technology", Sep. Purif. Technol., 211, 330 (2019).
9 K-H. Lee, B-M Kil, C-H Ryu, and G-J Hwang, "Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin", Membr. J., 30, 276 (2020).
10 K. H. Lee, J-Y Han, C-H Ryu, and G-J Hwang, "Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS)", Membr. J., 29, 155 (2019).
11 J. Lin, F. Lin, X. Chen, W. Ye, X. Li, H. Zeng, and B. Van Der Bruggen, "Sustainable management of textile wastewater: A hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge", Ind. Eng. Chem. Res., 58, 11003 (2019).
12 M. Irfan, L. Ge, Y. Wang, Z. Yang, and T. Xu, "Hydrophobic Side Chains Impart Anion Exchange Membranes with High Monovalent-Divalent Anion Selectivity in Electrodialysis", ACS Sustainable Chem. Eng., 7, 4429 (2019).
13 J. Yao, D. Wen, J. Shen, and J. Wang, "Zero discharge process for dyeing wastewater treatment", J. Water Process Eng., 11, 98 (2016).
14 T. Chen, Y. Zhao, Y. Zhao, Y. Xie, Z. Ji, X. Guo, Y. Zhao, and J. Yuan, "Competitive ion migration and process optimization of carbon sequestration and seawater decalcification in a bipolar electrodialysis process", ACS Sustainable Chem. Eng., 9, 8372 (2021).
15 C. Fernandez-Gonzalez, A. Dominguez-Ramos, R. Ibanez, and A. Irabien, "Electrodialysis with Bipolar Membranes for Valorization of Brines", Sep. Purif. Rev., 45, 275 (2016).
16 J. Liao, Q. Chen, N. Pan, X. Yu, X. Gao, J. Shen, and C. Gao, "Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis", Sep. Purif. Technol., 242, 116793 (2020).
17 Y. Liu, X. Ke, X. Wu, C. Ke, R. Chen, X. Chen, X. Zheng, Y. Jin, B. Van Der Bruggen, "Simultaneous removal of trivalent chromium and hexavalent chromium from soil using a modified bipolar membrane electrodialysis system", Environ. Sci. Technol., 54, 13304 (2020).
18 H. Ruan, N. Pan, C. Wang, L. Yu, J. Liao, and J. Shen, "Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications", Ind. Eng. Chem. Res., 60, 4086 (2021).
19 P. Goel, E. Bhuvanesh, P. Mandal, V. K. Shahi, A. Bandyopadhyay, and S. Chattopadhyay, "Diquaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis", Sep. Purif. Technol., 276, 119361 (2021).
20 L. Yao, Y. Qiu, Y. Zhao, C. Tang, and J. Shen, "A continuous mode operation of bipolar membrane electrodialysis (BMED) for the production of high-pure choline hydroxide from choline chloride", Sep. Purif. Technol., 233, 116054 (2020).
21 A. T. Besha, M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa, "Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis", Membr. 10, 1 (2020).
22 M. Irfan, T. Xu, L. Ge, Y. Wang, and T. Xu, "Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: Investigating the effect of functional groups and operating parameters", J. Membr. Sci., 588, 117211 (2019).
23 D. Rehman, Y. D. Ahdab, and J. H. V. Lienhard, "Monovalent selective electrodialysis: Modelling multi-ionic transport across selective membranes", Water Res., 199, 117171 (2021).
24 J. Liao, X. Yu, N. Pan, J. Li, J. Shen, and C. Gao, "Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications", J. Membr. Sci., 577, 153 (2019).
25 X. Wang, X. Zhang, C. Wu, X. Han, and C. Xu, "Anion exchange membranes with excellent monovalent anion perm-selectivity for electrodialysis applications", Chem. Eng. Res. Des,. 158, 24 (2020).
26 C. Du, J. R. Du, X. Zhao, F. Cheng, M. E. A. Ali, and X. Feng, "Treatment of brackish water RO brine via bipolar membrane electrodialysis", Ind. Eng. Chem. Res., 60, 3115 (2021) 3115-3129.   DOI
27 A. Achoh, V. Zabolotsky, and S. Melnikov, "Conversion of water-organic solution of sodium naphtenates into naphtenic acids and alkali by electrodialysis with bipolar membranes", Sep. Purif. Technol., 212, 929 (2019).