DOI QR코드

DOI QR Code

Simulation of Membrane-absorption Hybrid Process for LNG-FPSO

LNG-FPSO용 막-흡수 하이브리드 공정 전산모사

  • Min, Kwang-Joon (Department of Chemical Engineering, Hanyang University) ;
  • Cho, Habin (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jin-Kuk (Department of Chemical Engineering, Hanyang University) ;
  • Kang, Sang Wook (Department of Chemistry and Energy Engineering, Sangmyung University)
  • 민광준 (한양대학교 화학공학과) ;
  • 조하빈 (한양대학교 화학공학과) ;
  • 김진국 (한양대학교 화학공학과) ;
  • 강상욱 (상명대학교 화학에너지공학과)
  • Received : 2018.04.17
  • Accepted : 2018.04.24
  • Published : 2018.04.30

Abstract

A process design was performed for a removal of acid gases using membrane-absorption hybrid system in LNG-FPSO. Commercial process simulator Promax version 4.0 was utilized for comparing acid gases removal capabilities of amine absorption process and hybrid process. Simulation results show hybrid process could be small amine solvent circulate rate, energy consumption, equipment sizing compared to typical amine absorption process. As a result, hybrid process which is small footprint and energy saving process may be a good solution for the pre-treatment of natural gas in LNG-FPSO.

LNG-FPSO 산성가스 제거 공정에서 막-흡수 하이브리드 시스템 적용을 위한 설계를 수행하였다. 상용 공정 모사기인 Promax version 4.0을 이용하여 아민 흡수 공정과 하이브리드 공정의 산성가스 제거 성능을 비교하였다. 전사 모사 결과를 통해 하이브리드 공정은 아민 용매 순환량, 에너지 소모량, 장치 사이즈가 아민 흡수 공정에 비하여 작아지는 것을 확인할 수 있었다. 따라서, 컴팩트한 장치 사이즈와 에너지 절감 공정인 하이브리드 공정은 LNG-FPSO 천연가스 전처리 공정에 적용하기에 적합한 방안임을 확인하였다.

Keywords

References

  1. KEITI, "International Energy Outlook 2016", 4-6 (2016).
  2. T. Shane, "Gas Pretreatment Considerations for Floating LNG. in OTC Brasil. 2015", Offshore Technology Conference (2015).
  3. W. Y. Won, S. K. Lee, K. H. Choi, and Y. C. Kwon, "Current trends for the floating liquefied natural gas (FLNG) technologies", Korean J. Chem. Eng., 31, 732 (2014). https://doi.org/10.1007/s11814-014-0047-x
  4. X. Zhang, B. Singh, X. He, T. Gundersen, L. Deng, and S. Zhang, "Post-combustion carbon cap- ture technologies: energetic analysis and life cycle assessment", Int. J. Greenh. Gas Control., 27 289 (2014). https://doi.org/10.1016/j.ijggc.2014.06.016
  5. I. C. Omole, "Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams (Ph.D. thesis)", Georgia Institute of Technology, United States (2008).
  6. K. S. Liaoa, S. Japipa, J. Y. Laib, and T. S. Chung, "Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification", J. Membr. Sci., 534, 92 (2017). https://doi.org/10.1016/j.memsci.2017.04.017
  7. M. Askari and T. S. Chung, "Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes", J. Membr. Sci., 444, 173-183 (2013). https://doi.org/10.1016/j.memsci.2013.05.016
  8. M. Fallanza, A. Ortiz, D. Gorri, and I. Ortiz, "Polymer-ionic liquid composite membranes for propane/propylene separation by facilitated transport", J. Membr. Sci., 444, 164 (2013). https://doi.org/10.1016/j.memsci.2013.05.015
  9. S. Jeong and S. W. Kang, "Effect of $Ag_2O$ nano-particles on long-term stable polymer/$AgBF_4/Al(NO_3)_3$ complex membranes for olefin/paraffin separation", Chem. Eng. J., 327, 500 (2017). https://doi.org/10.1016/j.cej.2017.06.117
  10. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robenson, and J. E. McGrath, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  11. P. Gauthier, S. Clement, C. Vincent, M. Thomas, A. Pascal, F. Manel, B. Philippe, and W. Graeme, "Hexapod pilot tests determine the influence of 3D motions on the performance of an amine-based acid gas removal unit installed on a floating support", International Petroleum Technology Conference (2016).
  12. Y. H. Son, G. I. Kim, S. Y. Lee, H. Y. Kim, K. J. Min, and K. S. Lee, "Experimental investigation of liquid distribution in a packed column with structured packing under permanent tilt and roll motions using electrical resistance tomography", Chem. Eng. Sci., 166, 168 (2017). https://doi.org/10.1016/j.ces.2017.03.044
  13. Y. H. Son, K. J. Min, and K. S. Lee, "A liquid distribution model for a column with structured packing under offshore conditions", Chem. Eng. Sci., 153, 199 (2016). https://doi.org/10.1016/j.ces.2016.07.039
  14. A. Aroonwilas and P. Tontiwachwuthikul, "Mechanistic model for prediction of structured packing mass transfer performance in $CO_2$ absorption with chemical reactions", Chem. Eng. Sci., 55, 3651 (2000). https://doi.org/10.1016/S0009-2509(00)00035-X
  15. G. T. Rochelle, "Amine scrubbing for $CO_2$ capture", Science, 325, 1652 (2009). https://doi.org/10.1126/science.1176731
  16. Bishnoi, S. and G.T. Rochelle, "Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility", Chem. Eng. Sci., 55, 5531 (2000). https://doi.org/10.1016/S0009-2509(00)00182-2
  17. G. Rochelle, E. Chen, S. Freeman, D. Wagener, Q. Xu, and A. Voice, "Aqueous piperazine as the new standard for $CO_2$ capture technology", Chem. Eng. J., 171, 725 (2011). https://doi.org/10.1016/j.cej.2011.02.011