Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.90

Simulation of Membrane-absorption Hybrid Process for LNG-FPSO  

Min, Kwang-Joon (Department of Chemical Engineering, Hanyang University)
Cho, Habin (Department of Chemical Engineering, Hanyang University)
Kim, Jin-Kuk (Department of Chemical Engineering, Hanyang University)
Kang, Sang Wook (Department of Chemistry and Energy Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.28, no.2, 2018 , pp. 90-95 More about this Journal
Abstract
A process design was performed for a removal of acid gases using membrane-absorption hybrid system in LNG-FPSO. Commercial process simulator Promax version 4.0 was utilized for comparing acid gases removal capabilities of amine absorption process and hybrid process. Simulation results show hybrid process could be small amine solvent circulate rate, energy consumption, equipment sizing compared to typical amine absorption process. As a result, hybrid process which is small footprint and energy saving process may be a good solution for the pre-treatment of natural gas in LNG-FPSO.
Keywords
LNG-FPSO; membrane-absorption hybrid process; amine absorption; process simulation; acid gases removal;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 KEITI, "International Energy Outlook 2016", 4-6 (2016).
2 T. Shane, "Gas Pretreatment Considerations for Floating LNG. in OTC Brasil. 2015", Offshore Technology Conference (2015).
3 W. Y. Won, S. K. Lee, K. H. Choi, and Y. C. Kwon, "Current trends for the floating liquefied natural gas (FLNG) technologies", Korean J. Chem. Eng., 31, 732 (2014).   DOI
4 X. Zhang, B. Singh, X. He, T. Gundersen, L. Deng, and S. Zhang, "Post-combustion carbon cap- ture technologies: energetic analysis and life cycle assessment", Int. J. Greenh. Gas Control., 27 289 (2014).   DOI
5 I. C. Omole, "Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams (Ph.D. thesis)", Georgia Institute of Technology, United States (2008).
6 K. S. Liaoa, S. Japipa, J. Y. Laib, and T. S. Chung, "Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification", J. Membr. Sci., 534, 92 (2017).   DOI
7 D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robenson, and J. E. McGrath, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013).   DOI
8 M. Askari and T. S. Chung, "Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes", J. Membr. Sci., 444, 173-183 (2013).   DOI
9 M. Fallanza, A. Ortiz, D. Gorri, and I. Ortiz, "Polymer-ionic liquid composite membranes for propane/propylene separation by facilitated transport", J. Membr. Sci., 444, 164 (2013).   DOI
10 S. Jeong and S. W. Kang, "Effect of $Ag_2O$ nano-particles on long-term stable polymer/$AgBF_4/Al(NO_3)_3$ complex membranes for olefin/paraffin separation", Chem. Eng. J., 327, 500 (2017).   DOI
11 P. Gauthier, S. Clement, C. Vincent, M. Thomas, A. Pascal, F. Manel, B. Philippe, and W. Graeme, "Hexapod pilot tests determine the influence of 3D motions on the performance of an amine-based acid gas removal unit installed on a floating support", International Petroleum Technology Conference (2016).
12 Y. H. Son, G. I. Kim, S. Y. Lee, H. Y. Kim, K. J. Min, and K. S. Lee, "Experimental investigation of liquid distribution in a packed column with structured packing under permanent tilt and roll motions using electrical resistance tomography", Chem. Eng. Sci., 166, 168 (2017).   DOI
13 Y. H. Son, K. J. Min, and K. S. Lee, "A liquid distribution model for a column with structured packing under offshore conditions", Chem. Eng. Sci., 153, 199 (2016).   DOI
14 A. Aroonwilas and P. Tontiwachwuthikul, "Mechanistic model for prediction of structured packing mass transfer performance in $CO_2$ absorption with chemical reactions", Chem. Eng. Sci., 55, 3651 (2000).   DOI
15 G. Rochelle, E. Chen, S. Freeman, D. Wagener, Q. Xu, and A. Voice, "Aqueous piperazine as the new standard for $CO_2$ capture technology", Chem. Eng. J., 171, 725 (2011).   DOI
16 G. T. Rochelle, "Amine scrubbing for $CO_2$ capture", Science, 325, 1652 (2009).   DOI
17 Bishnoi, S. and G.T. Rochelle, "Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility", Chem. Eng. Sci., 55, 5531 (2000).   DOI