• 제목/요약/키워드: Membrane potential

검색결과 1,531건 처리시간 0.033초

Osteogenic potential of adult stem cells from human maxillary sinus membrane by Simvastatin in vitro: preliminary report

  • Yun, Kyoung-In;Kim, Dong-Joon;Park, Je-Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제39권4호
    • /
    • pp.150-155
    • /
    • 2013
  • Objectives: The objective of this study is to determine the adequate concentration and to evaluate the osteogenic potential of simvastatin in human maxillary sinus membrane-derived stem cells (hSMSC). Materials and Methods: Mesenchymal stem cells derived from the human maxillary sinus membrane were treated with various concentrations of simvastatin. The adequate concentration of simvastatin for osteogenic induction was determined using bone morphogenetic protein (BMP-2). The efficacy of osteogenic differentiation of simavastatin was verified using osteocalcin mRNA, and the mineralization efficacy of hSMSCs and simvastatin treatment was compared with alkaline phosphatase and von Kossa staining. Results: Expression of BMP-2 mRNA and protein was observed after three days and was dependent on the concentration of simvastatin. Expression of osteocalcin mRNA was observed after three days in the $1.0{\mu}M$ simvastatin-treated group. Mineralization was observed after three days in the simvastatin-treated group. Conclusion: These results suggest that simvastatin induces the osteogenic potential of mesenchymal stem cells derived from the human maxillary sinus membrane mucosa.

폐수처리 공정중 유해음이온을 측정하기 위한 PVC 막 전극 (The PVC Membrane Electrode for Measuring Hazardous Anion in Waste Water Process)

  • 우인성;안형환
    • 한국안전학회지
    • /
    • 제10권4호
    • /
    • pp.47-59
    • /
    • 1995
  • The perchlorate, thiocyanate, and nitrate ion-selective PVC membrance electrode for measuring hazardous anion in waste water were developed by incorporating the quaternary ammonium salts as active material. Ion-selective characteristics in waste water were studied by the useful pH range, the selective coefficients to various interfering anions, and the stability of electrode potential. DBP was best as a plasticizer. The effect of the membrane thickness on the electrode characteristics was improved with decreasing the membrane thickness, but below the optimum membrane thickness the electrode exhibited an inverse trend. The electrode potential of perchlorate, thiocyanate, and nitrate electrode with TDDA, as active material, was stable within the pH range 4-11, 3-12, and 4-10 repectively. And the long-term potential stability of these electrodes were 3.0, 3.5, and 3.5 months respectively. The order of the selectivity coefficients was as shown below ; $ClO_4{^-}$ > $SCN^-$ > $I^-$ > $NO_3{^-}$ > $Br^-$ > $CN^-$ > $F^-$ > $Cl^-$ > $Ac^-$ > $H_2PO_4{^-}$, $SO_4{^-}$.

  • PDF

임계치 이상의 전류자극에 대한 생체의 반응 연구 (A Biomedical Response Study for the Transthreshold Current Stimulation)

  • 장원석;최규식
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2827-2835
    • /
    • 2010
  • 임계치 이하의 자극이 주어지면 흥분막은 어떤 특이한 반응을 나타내지 않으나 어느 정도 이상이 되면 아주 다른 양상을 띄게 된다. 흥분막에는 이러한 특성이 있다는 것이 진작부터 알려져 있었고, 일부 연구자들이 이러한 현상을 전기적인 회로를 이용하여 정량적으로 해석하려 노력하였으나 그것은 임계치 이하의 경우에 대한 것에 불과하다. 특히 임계치 이상의 자극에 대한 반응을 정량적으로 연구한 경우는 극히 드물다. 그런데 전기회로와 생체는 비슷한 점도 있지만 다른 면도 많아서 그대로 이를 적용하기에는 무리가 있다. 이러한 이유로 인하여 본 논문에서는 생체막이 임계치 이상의 자극을 받았을 때에 어떠한 현상을 나타내는가를 전기적인 관점에서 정량적으로 연구하였다

Antibacterial Activity of Coffea robusta Leaf Extract against Foodborne Pathogens

  • Yosboonruang, Atchariya;Ontawong, Atcharaporn;Thapmamang, Jadsada;Duangjai, Acharaporn
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.1003-1010
    • /
    • 2022
  • The purpose of this study was to examine the phytochemical compounds and antibacterial activity of Coffea robusta leaf extract (RLE). The results indicated that chlorogenic acid (CGA) is a major component of RLE. The minimum inhibitory concentrations (MICs) of RLE against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella Typhimurium were 6.25, 12.5, 12.5, and 12.5 mg/ml, respectively. RLE effectively damages the bacterial cell membrane integrity, as indicated by the high amounts of proteins and nucleic acids released from the bacteria, and disrupts bacterial cell membrane potential and permeability, as revealed via fluorescence analysis. Cytotoxicity testing showed that RLE is slightly toxic toward HepG2 cells at high concentration but exhibited no toxicity toward Caco2 cells. The results from the present study suggest that RLE has excellent potential applicability as an antimicrobial in the food industry.

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

폐수중 티오시안산이온을 측정하기 위한 계면활성제를 이용한 고분자 막전극 (The Polymer Membrane Electrode by Surfactants for Measuring Continuously Thiocyanate Ion in Wastewater)

  • 최종석;안형환;강안수;우인성;황명환
    • 한국안전학회지
    • /
    • 제6권4호
    • /
    • pp.13-20
    • /
    • 1991
  • Ion-selective electrode responsive to the thiocynate ion prepared by using the quaternary ammonium salts as a active material and PVC as a membrane matrix. The effect of chemical structure and composition of active material, and the membrane thickness on the linear response. the detection limit, and Nernstian slope of the electrode studied. Under the above optimum conditions of membrane, the effect of pH and the selectivity coefficients to various interfering anions were compared and investigated. It was concluded that the functions of thiocynate ion-selective electrode(ISE) were closely related to the chemical structure of the quaternary ammonium salts. The linear response, and the detection limit of the electrode potential increased with the increase of the carbon chain length of the alkyl group in the quaternary ammonium salts in the ascending order of Aliquat 336T, TOAT, TDAT, and TDDAT. The optimum membrane thickness was 0.3mm. The electrode characteristics was better with the decrease of the concentration of active material, and the best concentration was 3 weight percent. The membrane potential was independent of the pH variation in the region from pH 2 to 12. The order of the selectivity coefficients is as follows:Cl $O_4$$^{[-10]}$$I^{[-10]}$ >N $O_3$$^{[-10]}$ >B $r^{[-10]}$$F^{[-10]}$ >C $l^{[-10]}$ >O $A_{c}$ $^{[-10]}$ 〓S $O_4$$^{2-}$.

  • PDF

과염소산 이온선택성 PVC막전극 제작 (Fabrication of Perchlorate Ion Selective PVC Membrane Electrode)

  • 우인성;안형환;강안수
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.298-305
    • /
    • 1998
  • The PVC membrane electrode for measuring perchlorate ion was developed by incorporating various quaternary ammonium sallts. The effect of chemical structure, the content of active material, the kind of plasticizers, and the membrane thickness on the electrode characteristic such as the linear response range and Nernstian slope of the electrode were studied. It was obtained that the effect of the chemical structure of an active material on the electrode characteristics was improved with increasing the alkyl chain length of the quarternary ammonium salts in the ascending order of Aliquat 336P, TOAP, TDAP, and TDDAP. The optimum membrane composition was 9.09wt% of TDDAP, 30.3wt% of PVC, and 60.6wt% of plasticizer(DBP). And the optimum membrane thickness was 0.45mm at this composition. Under the above condition, the linear response range was $10^{-1}~1.2\times10^{-6}$M, and the detection limit was $5.1\times10^{-7}$M with the Nernstian slope of 57mV/decade of activity of perchlorate ion. The electrode potential was stable within the pH range from 4 to 11. The selectivity coefficient was as shown below: $SCN^->I^-NO_3^->Br^->ClO_3^->F^->Cl^->SO_4^{2-}$

  • PDF

프로톤 전도성 세라믹 멤브레인 촉매 반응기를 이용한 수소 분리 및 제조 기술 (Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors)

  • 서민혜;박은덕
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.596-605
    • /
    • 2019
  • 프로톤 전도성 세라믹인 페로브스카이트 구조의 산화물은 고온 환경에서 고체 전해질 및 촉매로써 동시에 활용이 가능하여, 반응과 분리기능을 동시에 갖춘 멤브레인 반응기로 적용하기에 우수한 소재이다. 특히 수소 제조 촉매와 분리, 이를 결합한 멤브레인 반응기 개발에 관한 연구는 전해질 내 도핑 금속의 종류 및 온도, 반응물의 조성 등에 따라 다양한 연구 결과가 제시되고 있다. 이에 본 총설에서는 프로톤 전도성 세라믹반응기에서 메탄을 활용하여 수소 제조촉매와 멤브레인 반응기로 응용해 온 연구 동향을 살펴보고, 차세대 수소의 제조와 분리 기술로서의 응용분야 및 전망에 관해 고찰하고자 한다.

역삼투막 공정에서 화학적 세정에 의한 $SiO_2$ scale 제거특성 (Characteristics of $SiO_2$ Scale Removal by Chemical Cleaning in Reverse Osmosis Membrane Process)

  • 독고석;이형집
    • 상하수도학회지
    • /
    • 제24권1호
    • /
    • pp.93-101
    • /
    • 2010
  • Reverse osmosis (RO) membranes have been widely used for desalination as well as water and wastewater treatment facilities. Cleaning process is important to maintain stable operation as well as prevention of membrane fouling. Purpose of this research is to analyze electrostatistic and chemical characteristics after cleaning of RO membrane against $SiO_2$ scale. Four RO membranes of polyamide are used and examined about effect of chemical cleaning. EDTA (ethylene diamine tetraacetic acid) and SDS (sodium dodecil sulfate) and NaOH are applied for cleaning process after operation in synthetic water. Then, cleaning was performed with chemicals such concentration as 6hr, 12hr and 24hr, respectively. As a result, transmittances of FT-IR of four membranes are compared at each cleaning concentration. Ta/Tv shows difference of chemical composition between new membrane and cleaning membrane after cleaning. Type B of RO membrane is turned out to be most vulnerable to cleaning among four membranes. In terms of zeta potential, new membrane has -16 mV to +6 mV on pH while scaled membrane has -18 mV to 2 mV. However, it changed -23mV to 0.9 mV after cleaning. In comparison with existing salt rejection of RO membranes after cleaning, the rejection of the membranes goes down 0.7% maximum. Though cleaning changes the characteristics of membrane surface, it does not greatly affect salt rejection. pH is a critical factor to flux change in PA (polyamide) membrane.