• Title/Summary/Keyword: Membrane potential

Search Result 1,548, Processing Time 0.029 seconds

Evaluation on Chemical Cleaning Efficiency of Organic-fouled SWRO Membrane in Seawater Desalination Process (해수담수화 공정에서 역삼투막의 유기 막오염에 대한 SWRO 막의 화학세정 효율 평가)

  • Park, Jun-Young;Hong, Sung-Ho;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon in operation of seawater reverse osmosis (SWRO) and major obstacle for economic and efficient operation. When fouling occurs on the membrane surface, the permeate flux is decreased, on the contrary, the trans-membrane pressure (TMP) is increased, therefore operation and maintaining costs and potential damage of membranes are able to the pivotal risks of the process. Chemical cleaning process is essential to prevent interruptions for effective RO membrane filtration process. This study focused on proper chemical cleaning condition for polyamide RO membranes of 4 companies. Several chemical agents were applied for chemical cleaning under numbers of operating conditions. Additionally, a monitoring tool of FEEM as autopsy analysis method is adapted for the prediction of organic bio-fouling.

Separation of VOCs from Air through Composite Membranes Prepared by Plasma Polymerization of Hexamethyldisiioxane (Hexamethyldisiioxane의 플라즈마 중합에 의하여 제조된 복합막을 통한 공기중의 휘발성 유기물질의 분리에 관한 연구)

  • 류동현;오세중;손우익;구자경
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.63-65
    • /
    • 1998
  • 1. Introduction : Atmospheric discharge of VOC-contaminated streams in chemical plants and air streams from chemical processes poses a serious environmental problem and entails large financial losses. Such emissions may be reduced by i) adsorption process, ii) absorption process and iii) incineration process. These processes only forbids the air pollutions. Throughout the recent decade, another technique-membrane process has emerged. The separation and recovery of organic vapors by membrane process may have great economic potential. Most of the published research works on the separation of organic vapors from air were performed using silicon rubber membranes. However, it is very difficult to fabricate very thin membranes with less than 1 $u m thickness. Plasma polymerization could be a good technique to generate a thin polymer film. The objective of this work is to find out the optimum condition of plasma polymerization for producing VOC separation membrane. For the objective, composite membranes are prepared through plasma polymerization of hexamethyldisiloxane onto porous substrates under different conditions. The membrane is then subjected to the permeation of permanent gases and VOCs to find the correlations between the physical properties of the penetrant and permeability and selectivity.

  • PDF

NUCLIDE SEPARATION MODELING THROUGH REVERSE OSMOSIS MEMBRANES IN RADIOACTIVE LIQUID WASTE

  • LEE, BYUNG-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.859-866
    • /
    • 2015
  • The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

Mechanics of lipid membranes subjected to boundary excitations and an elliptic substrate interactions

  • Kim, Chun Il
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • We present relatively simple derivations of the Helfrich energy potential that has been widely adopted in the analysis of lipid membranes without detailed explanations. Through the energy variation methods (within the limit of Helfrich energy potential), we obtained series of analytical solutions in the case when the lipid membranes are excited through their edges. These affordable solutions can be readily applied in the related membrane experiments. In particular, it is shown that, in case of an elliptic cross section of a rigid substrate differing slightly from a circle and subjected to the incremental deformations, exact analytical expressions describing deformed configurations of lipid membranes can be obtained without the extensive use of Mathieu's function.

Potentiometric Sensor for the Determination of Dibucaine in Pharmaceutical Preparations and Electrochemical Study of the Drug with BSA

  • Ensafi, Ali A.;Allafchian, A.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2722-2726
    • /
    • 2011
  • Plasticized poly(vinyl chloride), PVCs, with different membrane compositions tested for use in the construction of an ion-selective sensor for the determination dibucaine. A prepared membrane with dioctyl phthalate-PVC and ion-pair of N-(1-naphthyl)ethylenediamine dihydrochloride-tetraphenyl borate had a good potential to acts as a potentiometric sensor for the analysis of dibucaine. A linear relationship was obtained between potential and logC varying between $1.0{\times}10^{-6}$ and $1.0{\times}10^{-2}$ M dibucaine with a good repeatability and reproducibility. The sensor was applied for the determination of the drug in pharmaceuticals and biological fluids such as plasma and urine samples with satisfactory results. The drug electrode has also been used to study the interaction of bovine serum albumin (BSA) with dibucaine. The saturated quantities of dibucaine binding were 13.04, 5.30 and 9.70 mol/mol in 0.01, 0.02 and 0.1% of protein, respectively.

Dynamic Research of a Potential Carrier for Hydrophobic Compound Model Pyrene Using Amphiphilic Peptide EYK

  • Wang, Liang;Zhao, Xiao-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.620-624
    • /
    • 2011
  • In recent years, the study of self-assembly peptide used in drug delivery system has been attracted great interest from scientists. In the category are self-assembly peptides in the structure either with one hydrophobic surface and another hydrophilic or a hydrophobic head and a hydrophilic tail. Here, we focus on a novel designed peptide EYK with double amphiphilic surfaces, investigating on the capability of peptide as a carrier for hydrophobic compound model pyrene. The fluorescence data presented the dynamic process of the transfer, showing that the pyrene was in the crystalline form in peptide solution, and molecularly migrated from its peptide encapsulations into the membrane bilayers when the peptide-pyrene suspension was mixed with liposome vesicles. The results indicated that the peptide EYK could stabilize hydrophobic pyrene in aqueous solution and delivered it into EPC liposome as a potential carrier.

Induction of Apoptotic Cell Death by a Ceramide Analog in PC-3 Prostate Cancer Cells

  • Oh, Ji-Eun;So, Kwang-Sup;Lim, Se-Jin;Kim, Mie-Young
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1140-1146
    • /
    • 2006
  • Ceramide analogs are potential chemotherapeutic agents. We report that a ceramide analog induces apoptosis in human prostate cancer cells. The ceramide analog induced cell death through an apoptotic mechanism, which was demonstrated by DNA fragmentation, the cleavage of poly ADP ribose polymerase (PARP), and a loss of membrane asymmetry. Treating the cells with ceramide analog resulted in the release of various proapoptotic mitochondrial proteins including cytochrome c and Smac/DIBLO into the cytosol, and a decrease in the mitochondrial membrane potential. In addition, the ceramide analog decreased the phospho-Akt and phospho-Bad levels. The expression of the antiapoptotic Bcl-2 decreased slightly with increasing Bax to Bcl-2 ratio. These results suggest that the ceramide analog induces apoptosis by regulating multiple signaling pathways that involve the mitochondrial pathway.

Mitochondria Control Protein as a Novel Therapeutic Target for Metabolic Syndrome

  • KimPak, Young-Mi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.23-30
    • /
    • 2008
  • Mitochondria biogenesis requires a coordination of two genomes, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Disruption of mitochondria function leads to a loss of mitochondrial membrane potential and ATP generating capacity and consequently results in chronic degenerative diseases including insulin resistance, metabolic syndrome and neurodegenerative diseases. Although PPAR-${\gamma}$ coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) was discovered as a central regulator of mitochondria biogenesis and a transcriptional co-activator of nuclear respiratory factor (NRF) and mitochondrial transcription factor A (Tfam), the expressions of PGC-$1{\alpha}$, NRF and Tfam were not significantly altered in tissues showing abnormal mitochondria functions. This observation suggests that there should be another regulator(s) for mitochondria function. Here, we demonstrate microRNAs (miRNAs) can modulate mitochondria function. Overexpression of microRNA dissipated mitochondrial membrane potential and increased ROS production in vitro and in vivo. It will be discussed the target of microRNA and its role in metabolic syndrome.

  • PDF

The coordinated regulation of mitochondrial structure and function by Drp1 for mitochondrial quality surveillance

  • Cho, Hyo Min;Sun, Woong
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.109-110
    • /
    • 2019
  • Mitochondrial morphology is known to be continuously changing via fusion and fission, but it is unclear what the biological importance of this energy-consuming process is and how it develops. Several data have suggested that mitochondrial fission executed by Drp1 is necessary to select out a damaged spot from the interconnected mitochondrial network, but the precise mechanism for the recognition and isolation of a damaged sub-mitochondrial region during mitochondrial fission is yet unclear. Recently, Cho et al. found that the mitochondrial membrane potential (MMP) is transiently reduced by the physical interaction of Drp1 and mitochondrial Zinc transporter, Zip1, at the fission site prior to the typical mitochondrial division, and we found that this event is essential for a mitochondrial quality surveillance. In this review, Cho et al. discuss the role of a mitochondrial fission in the mitochondrial quality surveillance system.

Toxicity of disulfiram, a therapeutic agent for chronic alcoholism, to mouse spleen cells

  • Han, Yong;Joo, Hong-Gu
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.177-181
    • /
    • 2018
  • Disulfiram is a drug used to treat alcohol dependence. Recent studies have shown that disulfiram also has anti-cancer effects. Considering that many anti-cancer agents have side effects, including immunosuppression, it is important to check if disulfiram has some cytotoxicity to immune cells. In this study, mouse spleen cells were treated with disulfiram and the metabolic activity was measured. Disulfiram increased the cell death of spleen cells according to annexin V-FITC/PI staining analysis. In addition, disulfiram decreased the mitochondrial membrane potential of spleen cells. The toxicity of disulfiram was concentration dependent. Interestingly, disulfiram affected the population of lymphocytes and the subset of spleen cells was altered. This study provides clinicians and researchers with valuable information regarding the toxicity of disulfiram to mouse spleen cells, particularly lymphocytes.