• Title/Summary/Keyword: Membrane fouling

Search Result 651, Processing Time 0.026 seconds

Determination of operating factor and characteristics of membrane fouling on hybrid coagulation pretreatment-UF system in drinking water treatment (정수처리 응집·한외여과 시스템의 연속운전을 통한 운전조건 결정 및 막오염 특성에 관한 연구)

  • Moon, Seong-Yong;Yun, Jong-Sub;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2008
  • This study is about efficiency of pretreatment process and operating factor to membrane process at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06{\beta}(C)/d$. The raw water used was from Nakdong stream which was characteristized by high organic matter and high turbidity. The result of the test was that coagulation is good process as to high removal rate to organic matter and turbidity but It caused problem to membrane pore blocking. This paper is to determine the membrane fouling potential under different membrane flux, backwash pressure and linear velocity. Backwash pressure and flux is important parameter on operation of membrane system. Those are directly affected on membrane system. When backwash pressure increased from 150 kPa to 200 kPa, the result showed that fouling (pressure increase rate) changed from 3.69 kPa/h to 0.93 kPa/h and the recovery rate changed from 90.7 % to 82.0 %. Linear velocity had slightly effect on fouling. Linear velocity increased from 0.2 m/s to 0.5 m/s, the corresponding pressure rate changed from 0.93 kPa/d to 0.77 kPa/d.

Effects of Characteristics of Flocculent Aggregates on Membrane Fouling in Microfiltration with Coagulation Pretreatment (전처리로 응집공정을 이용한 정밀여과 공정에서 응집 플록 특성에 따른 막오염 연구)

  • Lee, Seockheon;Kweon, Ji Hyang;Choi, Yang Hun;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.785-793
    • /
    • 2004
  • Coagulation has been investigated for pretreatment of low-pressure membrane systems such as microfiltration and ultrafiltration. Coagulation pretreatment can reduce foulants (particles and organic matter) prior to membrane filtration. However, when in-line coagulation or submerged type of filtration is used, flocculent aggregates could act as a foulant depending on concentrations and specific properties of floc. A natural water and three synthetic waters were used to investigate effects of coagulation pretreatment and presence of flocculent aggregates on membrane fouling. Coagulation pretreatment shows that foul ants were effectively removed during coagulation and the formed cake layer on the membrane surface had less resistances compared to raw natural water. In addition, little difference in membrane fouling was found by flocculent aggregates from the natural water. Interestingly, however, the results by three synthetic waters indicated that flocculent aggregates could have adverse effects on membrane fouling in a specific condition.

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

A study on the fouling characteristics of low-pressure membranes and NOM with coagulation pretreatment (응집제 주입에 따른 NOM과 저압막의 막오염 특성에 관한 연구)

  • Park, Sang-Hyuk;Hong, Jong-Hyun;Yu, Myong-Jin;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.237-246
    • /
    • 2010
  • This study was carried out to compare the performances of hydrophobic and hydrophilic membranes in the filtration of the pretreatment waters using coagulants such as PAC and PAHCs, and to investigate the influence of NOM characteristics on the fouling of membranes. As a result, the hydrophobic fraction was more effectively removed by PAHCs, however the transphilic and hydrophilic fraction were more effectively removed by PAC on NOM removal. Raw water showed the highest response in the range of humic substances, and pre-coagulated waters with PAC and PAHCs followed. It was also observed that the fouling effect for a hydrophobic membrane was greater than that of a hydrophilic membrane with a similar pore size, due to fouling caused by adsorption. Foulants causing significant flux decline were alcoholic compounds (polysaccharide-like) and humic substances including aromatic groups. Especially, it appeared that alcoholic compounds such as polysaccharide-like substances which mostly remained after coagulation pretreatment had most influence on fouling. It was found that fouling were influenced by each fraction NOM components depending on coagulants used. And PAHCs was more efficient for membrane fouling than PAC.

Investigation of Al-hydroxide Precipitate Fouling on the Nanofiltration Membrane System with Coagulation Pretreatment: Effect of Inorganic Compound, Organic Compound, and Their Combination

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.149-157
    • /
    • 2011
  • Nanofiltration (NF) experiments were conducted to investigate fouling of Al-hydroxide precipitate and the influence of organic compound, inorganic compound, and their combination, i.e., multiple foulants. $CaCl_2$ and $MgSO_4$ were employed as surrogates of inorganic compounds while humic acid was used as surrogate of organic compound. The flux attained from NF experiments was fitted with the mathematical fouling model to evaluate the potential fouling mechanisms. Al-hydroxide fouling with a cake formation mechanism had little effect on the NF membrane fouling regardless of the Al concentration. The NF fouling by Al-hydroxide precipitate was deteriorated in presence of inorganic matter. The effect of Mg was more critical in increasing the fouling than Ca. This is because the Mg ions enhanced the resistances of the cake layer accumulated by the Al-hydroxide precipitate on the membrane surfaces. However, the fouling with Mg was dramatically mitigated by adding humic acid. It is interesting to observe that the removal of the conductivity was enhanced to 61.2% in presence of Mg and humic acid from 30.9% with Al-hydroxide alone. The influence of dissolved matter (i.e., colloids) was more negative than particulate matter on the NF fouling for Al-hydroxide precipitate in presence of inorganic and organic matter.

Feasibility of Pyrophyllite Ceramic Membrane for Wastewater Treatment and Membrane Fouling (국내산 납석기반 세라믹 멤브레인 수처리 적용 가능성 평가 및 파울링 현상관찰)

  • Park, Eunyoung;Jang, Hoseok;Choi, Nakcheol;Lee, Sungjae;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.205-211
    • /
    • 2016
  • Performance of pyrophyllite-based ceramic membranes newly developed were investigated. Membrane fouling caused by microbial suspensions taken from a full-scaled MBR system at domestic wastewater treatment plant was observed at different airflow rate and distance between each membrane. For the pyrophyllite support, pore size was about $1.0{\mu}m$, but surface coating with $Al_2O_3$ solution decreased the pore size with the reduction of the pure water permeability. With the MLSS taken from the full-scaled MBR system (6 g/L), the fouling rate was decreased by increasing airflow rate under $20L/m^2{\cdot}hr$ of setpoint flux. However, the effectiveness of the airflow rate on the fouling control depends strongly upon the gap between each membrane. At fixed airflow rate, the fouling rate was decreased by increasing the gap between each pyrophyllite membrane. Nevertheless, further increasing the membrane distance from 3.5 to 5.4 cm resulted in higher fouling rate. Similar result was observed with the $Al_2O_3$ coated-pyrophyllite membrane. Nevertheless, the fouling rate was lower with the coated membrane than that observed with the uncoated pyrophyllite support. Regardless of surface coating, the suspended solids were removed almost completely and the surface coating on the pyrophyllite support improved organic rejection with PEG solution (MW : 8000 kDa) tested.

Effects of Biomass Concentration and Sludge Loading Rate on Bioactivity and Membrane Fouling in a Submerged Membrane Bioreactor System (침지형 분리막 생물반응기에서 미생물 농도와 슬러지 부하에 따른 미생물 활성 변화와 막오염 특성 연구)

  • Tak Tae-Moon;Bae Tae-Hyun;Jang Gyoung-Gug
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2004
  • In this study, membranes were coupled to a sequencing batch reactor for simultaneous removal of organic matter and nitrogen, and the influences of MLSS (mixed liquor suspended solid) concentration and the sludge loading rate on membrane fouling and bioactivity were investigated. The amount of membrane fouling slightly increased with MLSS concentration at both non-aeration and aeration conditions, but effect of MLSS concentration was more significant at aeration condition. Although the effect of MLSS concentration on membrane fouling was found to be insignificant at low concentration level, extremely low sludge loading, which were generated by the maintenance of large amount of biomass in the reactor, caused severe membrane fouling, and air scouring effect decreased significantly in this condition. Specific bioactivity was constantly reduced as sludge loading rate decreased. In spite of high MLSS concentration over 17,000 mg/L, the activity of the reactor decreased at extremely low sludge loading rate presumably due to the lower oxygen transfer and the competition of biomass to deficient substrate.

The Evaluation of Fouling Mechanism on Cross Flow Precoagulation-UF Process (십자형 응집-UF 막분리 공정 적용시 전처리 응집조건에 따른 막오염 메카니즘 규명)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.639-645
    • /
    • 2008
  • The objectives of this research are to (1) observe changes in particle size distribution due to formation of microflocs during coagulation process (2) identify the membrane fouling potential on cross flow system (3) investigate the mechanism of membrane fouling. The rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. The pretreatment of the raw water significantly reduced the fouling of the UF membrane. Also, the rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane. That is, during the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation not only improved dissolved organics removal efficiency but also flux recovery efficiency.

Factors related to Performance of Reverse Osmosis Membrane in Seawater Desalination Process (해수담수화 공정에서 역삼투막의 거동에 영향을 주는 요인)

  • Park, Jun-Young;Hong, Sung-Ho;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Chang-Ha;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.171-176
    • /
    • 2011
  • Organic matters that comprise a tiny part of seawater generally occur over 50% of membrane fouling in Reverse Osmosis Process. This study evaluates Foundation efficiency of reverse osmosis membranes under brackish and seawater conditions and resistance of organic fouling. Moreover, analyzing the membrane surface through roughness, contact angle and zeta potential results in roughness and contact angle are proportional to flux decline rate (FDR), yet FDR has high value when zeta potential is low level. Furthermore, with various membrane fouling of different raw water conditions, the flux tends to improve when pH value is high and raw water which is complex with organic and cation pollutes membrane faster than organic separated raw water condition.

Characteristics of Fouling in a Submerged Membrane Bioreactor Activated Sludge Process (침지형 막분리 활성 슬러지법에 따른 막 오염 특성)

  • 김대식;강종석;김기연;이영무
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.170-178
    • /
    • 2001
  • PVC microfiltration membrane was prepared by phase immersion method and applied to membrane bioreactor (MBR) contained activated sludge. The hydrophilicity of membrane and the pore size increase with the amount of additive(PVP) ducting the preparation of membrane. Permeation characteristics and the membrane fouling behavior were investigated by varying the internal environment in MBR using the prepared membranes. When there is a sludge bulking in MBR caused by microorganism, membrane fouling was accumulated. The cake layer resistance, R$_{c}$, of membrane increased in the order of CP-0 > CP-1.0 > CP-1.5. Rc increased up to 3.5~7 fold where the sludge bulking occurred in MBR. CP-1.5 seems to be appropriated membrane on the basis of the surface characteristics and the flux. The average flux of all the test membrane was 12(${\pm}$2) L/$m^2$hr whereas the COD removal efficiency was 98.8%. The ratio of bulking sludge and the type and the size of microorganism in operating MBR accelerate the membrane fouling and flux decline. It is concluded that the characteristic of membrane filtration depends on the hydrophilicity of membrane, the internal environment of MBR reactor and the growth factor of sludge.

  • PDF