• Title/Summary/Keyword: Membrane fouling

Search Result 651, Processing Time 0.023 seconds

Effect of $N_2$-back-flushing Time and TMP in Lake Water Treatment Using Multichannel Ceramic Microfiltration Membranes (다채널 세라믹 정밀여과막으로 호소수 처리시 질소 역세척 시간 및 막간 압력차의 영향)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.124-133
    • /
    • 2007
  • In this study, we treated lake water by 2 kinds of multichannel ceramic micro filtration membranes. We could investigate effects of $N_2-back-flushing$ time (BT) and transmembrane pressure (TMP), and find optimal operating conditions. The BT were changed in $10{\sim}60$ sec, TMP in $0.6{\sim}2.0$ bar at fixed filtration time (FT) 8 min, flow rate 2.0 L/min and back-flushing pressure 2.0 bar. Also, the optimal conditions were discussed in the viewpoints of resistance of membrane fouling $(R_f)$, dimensionless permeate flux $(J/J_o)$, permeate flux (J) and total permeate volume $(V_T)$. As result, optimal back-flushing conditions for HC04 ($0.4{\mu}m$ pore size) and HC10 membrane $(1.0{\mu}m)$ were BT=10 sec and BT=20 sec, respectively. Then, higher TMP should increase the driving force, and could produce more VT. Average rejection rates of pollutants were higher than 95.4% for turbidity, $12.7{\sim}20.1%\;for\;COD_{Mn},\;0.0{\sim}6.4%\;for\;NH_3-N,\;1.9{\sim}4.6%$ for T-N and $34.9{\sim}88.4%$ for T-P.

Effect of pH, Saturated Oxygen, and Back-flushing Media in Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst-loaded PES Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성수처리에서 pH 및 포화산소, 역세척 매체의 영향)

  • Hong, Sung Taek;Park, Jin Yong
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2014
  • The effects of pH, saturated oxygen, and back-flushing media were investigated in hybrid process of tubular ceramic microfiltration and $TiO_2$ photocatalyst-loaded PES (polyethersulfone) beads for advanced drinking water treatment, and compared results of water, nitrogen, or oxygen back-flushing in the viewpoints of membrane fouling resistance ($R_f$), permeate flux (J) and total treated water ($V_T$). $R_f$ decreased, and J and $V_T$ increased as decreasing pH. Turbidity treatment efficiencies were similar at water or nitrogen back-flushing independent of pH, but DOM (dissolved organic matter) treatment efficiency did not have a trend at water back-flushing. $R_f$ at NBF (no back-flushing) with SO (saturated oxygen) was the lower than that at NBF without SO. Also, the DOM treatment efficiency at NBF with SO was the lower than that at NBF without SO. It happened because OH radicals produced by reaction of SO and photocatalyst could dilute with water inside the module. The DOM treatment efficiency of gas back-flushing showed the larger than that of water back-flushing at back-flushig period 10 min. It proved that the adsorption or photo-oxidation of PES beads could be activated by the more effective bead-cleaning of gas back-flushing than water back-flushing.

Effect of pH and Oxygen Back-flushing on Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구를 이용한 혼성 수처리 공정에서 pH 및 산소 역세척의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • The effects of pH and oxygen back-flushing were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As increasing pH, $R_f$ decreased and J increased. Finally the maximum $V_T$ could be acquired at pH 9. Treatment efficiencies of turbidity was almost same independent of pH. Treatment efficiency of dissolved organic matters (DOM) decreased as increasing pH. As results of comparing the oxygen and nitrogen back-flushing, $R_{f,180}$ at oxygen back-flushing was the lower than that at nitrogen back-flushing, and the dimensionless final permeate flux ($J_{180}/J_0$) by initial permeate flux ($J_0$) at oxygen back-flushing was maintained the higher than that at nitrogen back-flushing except 10 and 12 min of back-flushing period (FT). Treatment efficiency of turbidity at oxygen back-flushing was a little higher than that at nitrogen back-flushing. Treatment efficiency of the DOM at nitrogen back-flushing was the higher than that at oxygen back-flushing. Also, treatment efficiency of turbidity at saturated oxygen was similar with those of oxygen and nitrogen back-flushing, but the treatment efficiency of DOM was increased significantly because OH radical could be generated by reaction between saturated oxygen and photocatalyst.

The Effect of Coagulant on Filtration Performance in Submerged MBR System (침지형 MBR 공정에서 응집제가 여과성능에 미치는 영향)

  • Kim Kwan-Yeop;Kim Ji-Hoon;Kim Young-Hoon;Kim Hyung-Soo
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.182-187
    • /
    • 2006
  • The purpose of this study was to investigate effect of coagulation on filtration performance of membrane in submerged MBR system and influence of continuous aeration to reduce fouling of membrane surface on coagulated floc. For this purpose, aeration tank sludge of MBR system was compared with jar-test sludge. The experimental results were analysed in terms of floc size and SRF (Specific resistance of Filtration). The more alum was added, the more content of floc below $10{\mu}m$ reduced and SRF decreased. But compared with jar-test results, it was found that effect of coagulation on MBR floc was reduced. Operation time of membrane in alum added MBR was longer than that in control MBR. But operation time was not proportional to alum dose. It was thought that the result was reason that floc below $10{\mu}m$ was not reduced sufficiently by shear force of continuous aeration. Moreover it was founded that if alum is added more than proper dose, it brings filtration resistance to increase.

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Effects of magnetic ion exchange resin with PACI coagulation on removal of natural organic matter and MF fouling (자성체 이온교환 수지와 PACI 응집에 의한 국내 주요 수계 내 자연유기물 제거 특성 및 막오염 저감 효과)

  • Choi, Yang Hun;Jeong, Young Mi;Kim, Young Sam;Lee, Seung Ryul;Kweon, Ji Hyang;Kwon, Soon Buhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2008
  • The application of magnetic ion exchange resin($MIEX^{(R)}$) is effective for natural organic matter(NOM) removal and for control of the formation of disinfection byproducts(DBPs). NOM removal is also enhanced by adding $MIEX^{(R)}$ with coagulant such as polyaluminium chloride(PACl) in conventional drinking water treatment systems. In the application of $MIEX^{(R)}$, it is important to understand changes of NOM characteristics such as hydrophobicity and molecular weight distributions with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant treatment.To observe characteristics of NOM by treatment with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant, four major drinking water sources were employed. Results showed that the addition of $MIEX^{(R)}$ to coagulation significantly reduced the amount of coagulant required for the optimum removal of dissolved organic matter(DOC) and turbidity in the all four waters. The DOC removal was also increased approximately 20%, compared to coagulant treatment alone. The process with $MIEX^{(R)}$ and coagulant showed that complementary removal of hydrophobic and hydrophilic fraction of DOC. The combined processes preferentially removed the fractions of intermediate (3,000-10,000 Da) and low (< 500 Da) molecular weight. The microfiltration test showed that membrane cake resistance was decreased for waters with flocs from $MIEX^{(R)}$+coagulant. A porous layer was formed to $MIEX^{(R)}$ on the membrane surface and the layer consequently inhibited settling of coagulant flocs, which could act on a foulant.

The study of a novel SWRO-PRO hybrid desalination technology (SWRO-PRO 복합해수담수화 신공정기술의 연구)

  • Kim, Jisook;Yeo, Inho;Lee, Wonil;Park, Taeshin;Park, Yonggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.317-324
    • /
    • 2018
  • SWRO-PRO hybrid desalination technology is recently getting more attention especially in large desalination markets such as USA, Middle East, Japan, Singapore, etc. because of its promising potential to recover a considerable amount of osmotic energy from brine (a high-concentration solution of salt, 60,000 - 80,000 mg/L) and also to minimize the impact of the discharged brine into a marine ecosystem. By the research and development of the core technologies of the SWRO-PRO desalination system in a national desalination research project (Global MVP) supported by Ministry of Land, Infrastructure, and Transport (MOLIT) and Korea Agency for Infrastructure Technology Advancement (KAIA), it is anticipated that around 25% of total energy consumption rate (generally 3 to $4kWh/m^3$) of the SWRO desalination can be reduced by recovering the brine's osmotic energy utilizing wastewater treatment effluent as a PRO feed solution and an isobaric pressure exchanger (PX, ERI) as a PRO energy converter. However, there are still several challenges needed to be overcome in order to ultimately commercialize the novel SWRO-PRO process. They include system optimization and integration, development of efficient PRO membrane and module, development of PRO membrane fouling control technology, development of design and operation technology for the system scaling-up, development of diverse business models, and so on. In this paper, the current status and progress of the pilot study of the newly developed SWRO-PRO hybrid desalination technology is discussed.

Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions (중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가)

  • Kim, Bongchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

Pressure Retarded Osmosis Process: Current Status and Future (염도차를 이용한 압력지연삼투 공정의 현황과 미래)

  • Kim, Jihye;Kim, Seung-Hyun;Kim, Joon Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.791-802
    • /
    • 2014
  • Energy shortage is being exacerbated due to the increase of energy consumption and depletion of fossil fuels. In order to release the energy crisis, new types of energy resources such as small hydropower, solar power, wind power and biomass have been already developed or actively researched. Recently, osmotic power, which harvests energy from salinity gradient between seawater and fresh water, is considered as a feasible candidate. Among the osmotic power processes, pressure retarded osmosis (PRO) is widely gaining attention because of no emission of carbon dioxide and less sensitivity to the external environmental conditions. However, PRO process is facing difficulties such as the lack of specialized PRO membrane and optimization technologies. Therefore, PRO was reviewed in this paper in terms of theoretical background, membrane development, process development and fouling mechanism to provide insights and suggest the future direction of PRO research.

Modelling of starch industry wastewater microfiltration parameters by neural network

  • Jokic, Aleksandar I.;Seres, Laslo L.;Milovic, Nemanja R.;Seres, Zita I.;Maravic, Nikola R.;Saranovic, Zana;Dokic, Ljubica P.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.115-121
    • /
    • 2018
  • Artificial neural network (ANN) simulation is used to predict the dynamic change of permeate flux during wheat starch industry wastewater microfiltration with and without static turbulence promoter. The experimental program spans range of a sedimentation times from 2 to 4 h, for feed flow rates 50 to 150 L/h, at transmembrane pressures covering the range of $1{\times}10^5$ to $3{\times}10^5Pa$. ANN predictions of the wastewater microfiltration are compared with experimental results obtained using two different set of microfiltration experiments, with and without static turbulence promoter. The effects of the training algorithm, neural network architectures on the ANN performance are discussed. For the most of the cases considered, the ANN proved to be an adequate interpolation tool, where an excellent prediction was obtained using automated Bayesian regularization as training algorithm. The optimal ANN architecture was determined as 4-10-1 with hyperbolic tangent sigmoid transfer function transfer function for hidden and output layers. The error distributions of data revealed that experimental results are in very good agreement with computed ones with only 2% data points had absolute relative error greater than 20% for the microfiltration without static turbulence promoter whereas for the microfiltration with static turbulence promoter it was 1%. The contribution of filtration time variable to flux values provided by ANNs was determined in an important level at the range of 52-66% due to increased membrane fouling by the time. In the case of microfiltration with static turbulence promoter, relative importance of transmembrane pressure and feed flow rate increased for about 30%.