• Title/Summary/Keyword: Membrane for gas separation

Search Result 331, Processing Time 0.024 seconds

Preparation and characterization of $C-SiO_2$ membranes modified by oxidation and their gas separation properties

  • Han, Sang-Hoon;Kim, Youn-Kook;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.180-183
    • /
    • 2004
  • Gas separation membranes are now used in a wide variety of application areas as oxygen enrichment, hydrogen recovery, acid gas treatment, and natural gas dehydration etc [1]. Since polymeric membranes offer attractive properties for gas separation application, they have been variously studied [2-4].(omitted)

  • PDF

Flat Sheet Polybenzimidazole Membranes for Fuel Cell, Gas Separation and Organic Solvent Nanofiltration: A Review (평막형태의 폴리벤지다미졸 분리막의 연료전지, 기체분리막, 유기물분리용 나노여과막으로의 응용: 총설)

  • Anupam Das;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.279-304
    • /
    • 2023
  • Polybenzimidazole (PBI) based membranes have evolved in literature as a popular membrane material for various applications in the past two decades because of their high temperature thermal durability, strong mechanical and tensile properties, high glass transition temperature (Tg), ion conduction ability at elevated temperature (up to 200℃), oxidative or chemical durability along with robust network like structural rigidity, which make PBI membranes suitable for various potential applications in chemically challenging environments. Ion conducting PBI based membranes have been extensively utilized in high temperature proton exchange membrane fuel cells (HT-PEMFC). In addition, PBI based membranes have been vastly utilized for the development of gas separation membranes and organic solvent nanofiltration (OSN) membranes for their unique characteristics. This review will cover the recent progress and application of various types of flat sheet PBI based membranes for HT-PEMFC, gas separation and OSN application.

Zeolite Membrane for High Temperature Gas Separation

  • Li, G.;Kikuchi, E.;Matsukata, M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • The present study reports the preparation of a compact ZSM-5 membrane showing high thermal stability and high separation factors, especially n-/i-butane isomers at high temperatures. ZSM-5 membrane was prepared on a porous $\alpha$-Al$_2$O$_3$ tube (an average pore diameter, ca. 100 nm) at 18$0^{\circ}C$ by the seed-assisted crystallization method. The XRD and SEM results showed that a thin zeolite layer (ca. 1 ${\mu}{\textrm}{m}$) was formed on the support surface. The single gas permeances of $N_2$, H$_2$, SF$_{6}$, n-butane, and i-butane were taken at 27$0^{\circ}C$. i-Butane permeance hardly changed after repeated thermal treatments up to 40$0^{\circ}C$, indicating the membrane is thermally stable. On the other hand, other single gas permeances increased when the membrane was further dried at 40$0^{\circ}C$, indicating thermal pretreatment at 27$0^{\circ}C$ could not remove all the adsorbed species in the membrane. i-Butane and SF$_{6}$ permeances were significantly lower than the permeances of smaller molecules, indicating that the membrane has a low concentration of defects. The ideal selectivities at 27$0^{\circ}C$ were 61 for $H_2$/i-butane and 47 for $H_2$/SF$_{6}$. The temperature dependency of n/i-butane ideal selectivities and separation factors for an equimolar n/i-butane mixture was studied. The ideal selectivity showed a maximum of 36 at 30$0^{\circ}C$. The separation factors increased with temperature and reached around 12 at 300-40$0^{\circ}C$, which were much higher than those reported in the literature.ature.

  • PDF

Preparation of water-swollen-hydrogel membrane for gas separation. I. (기체 분리용 수팽윤성 분리막 제조. I.)

  • 박유인;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.43-44
    • /
    • 1996
  • Water-swollen-hydrogel membranes for gas separation were prepared by dipcoating and thermal crosslinking of poly(vinylalcohol) (PVA) - poly(acrylacid) (PAA) blends on asymmetric porous polyetherimide(PEI) supporters. The polyetherimide supporters, prepared by phase inversion of polyetherimide solutions in N-methylpyrrolidone(NMP) (composition of PEI/NMP=25/75), had good heat and chemical resistane. The coating materials with different blending ratios of PVA/PAA(=90/10, 80/20, 70/30) were characterized with differential scanning calorimetry (DSC), infrared spectroscopy(IR) and the water swelling ratios. The permeabilities and the separation factors of carbon dioxide through these membranes were measured by a mass flow meter and gas chromatograph at different temperatures, respectively, under a vacuum mode of downstream.

  • PDF

Preparation of Polyvinylpyrrolidone/AgBF4/Al(NO3)3 Electrolyte Membranes for Facilitated Gas Transport (기체 촉진수송을 위한 polyvinylpyrrolidone/AgBF4/Al(NO3)3 전해질 분리막 제조)

  • Yoon, Ki Wan;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • Polyvinylpyrrolidone (PVP), which is glassy polymer to have amide functional group, was induced to fabricate the facilitated olefin transport membranes for olefin/paraffin separation. Separation performance for the mixed gas consisting of propylene and propane (50 : 50 vol%) was measured by gas chromatography and bubble flow meter. The properties of membranes were confirmed by scanning electron microscope and FT-IR. The results of long-term separation tests showed the selectivity of 15 and permeance of 1.3 GPU. The membranes was compared with poly(2-ethyl-2-oxazoline) $(POZ)/AgBF_4/Al(NO_3)_3$ membranes and the characteristics were confirmed as polymer matrix for facilitated transport membranes.

Study on the Multi-stage Hollow Fiber Membrane Modules for SF6 Gas Separation (불화가스 분리를 위한 중공사막 모듈의 다단 기체분리공정 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • Polyimide hollow fiber membrane modules were prepared in order to investigate the process of multi stage gas separation. The modules performance was carried out using 50/50 of $N_2/SF_6$ mixed gas. The membrane modules has been tested for measuring gas flow rate and concentration under various stage cut at 0.5 MPa. The membrane modules showed a high recovery ratio at the same stage cut as $N_2/SF_6$ selectivity increased. Two stage process was fulfilled for improving $SF_6$ recovery ratio and $SF_6$ concentration. Eventually, two stage process showed higher performance of $SF_6$ recovery ratio and concentration ($SF_6$ recovery ratio = 95%, $SF_6$ conc. = 98%).

Study on Enhancement of Membrane Technology Competitiveness through NTIS (National Science & Technology Information Service) Data (NTIS (National Science & Technology Information Service) Data를 이용한 분리막 소재산업 경쟁력 향상 및 국가 연구비 지원 효율화에 관한 연구)

  • Woo, Chang Hwa
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.124-130
    • /
    • 2020
  • Climate change is getting worse in the 21st century. So, water shortages are expanding worldwide. Carbon dioxide generated from the use of fossil fuels is 80% of the total green house gas. Because it occupies, it has become a factor of global warming. Therefore, the importance of water treatment membrane, gas separation membrane, and secondary battery separation membrane is increasing, but it occupies technology in developed countries such as the United States, Japan, and Germany. Therefore, the advancement of membrane technology is urgently required. So, although the country supports a lot of research budgets, We will analyze the results using NTIS data. As a result of the analysis used, it is supported mainly for short-term tasks, and the research budget is small compared to other technical fields, so the basic material field technology is weak. Therefore, when we invest a lot of long-term tasks, with a lot of budget, and universities, membrane technology has been improved and competitiveness has been strengthened.

A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane (다공성 분리막을 이용한 최적의 Bio-gas 분리인자 도출)

  • Lee, Seung-Won;Jeong, Chang-Hoon;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1011-1019
    • /
    • 2011
  • The objective of this research is to evaluate optimal conditions of permeability and selectivity on the polysulfone membrane for efficiency of separation of $CH_4$ by checking four factors which are temperature, pressure, gas compositions and gas flow rates. When higher pressure was applied at the input, lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ were shown. It has the tendency to show lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ at the output as higher temperature at input. The lower flow rates make higher efficiency of recovery of $CH_4$ and lower efficiency of separation of $CH_4$. Finally, over 90% efficiency for $CH_4$ separation and recovery conditions are temperature ($-5^{\circ}C$), pressure (8 bar), gas composition rate (6:4) ($CH_4:CO_2$) and gas flow rate ($5\ell$/min). These conditions make higher separation and recovery efficiency such as 90.1% and 92.1%, respectively.

Preparation of Alumino-silicate Membrane and Its Application to a Gas Separation

  • 김태환
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.23-46
    • /
    • 2002
  • The cryogenic, pressure swing adsorption and membrane methods have been used to separate air into nitrogen and oxygen. The air separation membrane is made of the polymers, of which manufacturing process is complicate and it causes a little high production cost. Polymer membrane has temperature limit in usage and low durability even at moderate temperature. Therefore, inorganic membranes have been studied for years. As formation of unit alumino-silicate membrane, unit cells of membrane were made with a few coating methods. In this study the dipping of substrate into sols, application of vacuum to the opposite side of substrate with coating and rotating of the substrate in the sols were found as good coating memthods to make a uniform coating and to control the thickness of membrane. The membrane coats were examined by SEM and XRD. The sample ESZl-1 was compared with those of samples that prepared by another method. The present developed coating methods could be applied to the various types of zeolite membrane formation, that is A- X-, Y- ZSM- and MCM-types of membranes. Also these membrane forming methods could be applied to formation of catalyst absorbed zeolite membrane, of which zeolite absorb the catalytic metals. The product obtained from these coating methods could be applied to the industrial gas and liquid phase catalytic reaction and separation processes.

  • PDF