• 제목/요약/키워드: Membrane extraction

검색결과 269건 처리시간 0.032초

소암산의 항암효과 및 혈관신생억제에 미치는 영향 (Study on the Anticancer & Inhitory Effects of Somamsan)

  • 김용수;이성원;추영국;정규용;안성훈;정우열;우원홍
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.77-84
    • /
    • 2003
  • Cancer, which is expressed in various forms, is one of the leading causes of human death, Soamsan (SAS) is composed of ten medicinal herb, the prescription was made according to the principles of Oriental traditional medicine based on the concept of synergic effects and interaction of among the components. SAS has been used for the cancer therapy, but the mechanism of it's effect is not well known. In the present study, the cytotoxic effect of the SAS water extract on cancer cell lines was investigated by the method of MTT in A549 cell lines and the anti-angiogenic effect was shown in the assay of chorioallantoic membrane (CAM) and in the cornea of rat administerd orally with SAS water extraction. The viability of A549 cell lines was not affected by the whole extract of SAS but the n-Hexan fraction of SAS water extract showed strong cytotoxicity which was not seemed to be done by the apoptotic mechanism. SAS water extract showed inhibition effects of angiogenesis induced in the cornea of rat and CAM assay. As the above results, it is suggested that SAS can be a candidate for new prescription for cancer therapy.

Development of Rapid Immune-gold Strip Kit for On-Site Diagnosis of Tomato spotted wilt virus

  • Yoon, Ju-Yeon;Choi, Gug-Seoun;Cho, In-Sook;Choi, Seung-Kook
    • 식물병연구
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2014
  • A rapid, user-friendly and simple immune-chromatographic dipstick kit named 'rapid immune-gold strip' (RIGS) kit was developed in a novel single strip format to detect on-site detection of Tomato spotted wilt virus (TSWV). Immunoglobulin G (IgG) from polyclonal antisera raised in rabbits against TSWV was purified through protein-A affinity chromatography and then the purified TSWV-IgG was conjugated to colloidal gold nano-particles which served as a test line on nitrocellulose membrane. Protein A that non-specifically binds to TSWV antibody was used as a control line on the same strip. The diagnosis process with the TSWV-RIGS involves simply grinding the suspect plant sample in a bag that contains the extraction buffer and inserting the strip the bag. Results can be seen in 2-5 minutes. The flow of the complexes of gold particles coated with TSWV-IgG and a crude sap from TSWV-infected pepper, tobacco and tomato plants resulted in intensive color formed on the test lines proportional to the concentrations of TSWV. The RIGS-TSWV kit did not show any cross-reactions against other tomato-infecting viruses unrelated to TSWV. These results indicate that the TSWV-RIGS kit is highly sensitive and is not required for laboratory training and experience prior to testing. The TSWV-RIGS kit is suitable for on-site detection of suspect TSWV-infected plants as well as for laboratory diagnosis.

Macrocyclic Isomers with S2O-Donor Set as Silver(I) Ionophores

  • Park, Sung-Bae;Yoon, Il;Seo, Joo-beom;Kim, Hyun-Jee;Kim, Jae-Sang;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.713-717
    • /
    • 2006
  • $S_2O$-donor macrocyclic isomers incorporating a xylyl group in o- ($L^1$), m- ($L^2$) and p-positions ($L^3$) extract no metal ions except silver(I) from aqueous to chloroform phase. And the magnitudes of %Ex for silver(I) are in the order of $L^1$ > $L^2$ > $L^3$. Taking this result into account, $L^1$-$L^3$ were utilized as membrane active components to prepare potentiometric silver(I)-selective electrodes. The proposed macrocycles-based electrodes E1 ($L^1$), E2 ($L^2$) and E3 ($L^3$) exhibited comparable results which show considerable selectivity toward silver(I) over alkali, alkali earth and other transition metal ions. Comparative NMR study on $L^1$-$L^3$ and their complexes with silver(I) in solution was also accomplished. In addition, a unique sandwich-type complex $[Ag(L^1)_2]CIO_4$ was prepared from the assembly reaction of $L^1$ with $AgClO_4$ and structurally characterized by an X-ray diffraction analysis.

Production of Oleamide, a Functional Lipid, by Streptomyces sp. KK90378

  • Kwon, Jeong-Ho;Hwang, Sung-Eun;Han, Jae-Taek;Kim, Chang-Jin;Rho, Jung-Rae;Shin, Jong-Eon
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1018-1023
    • /
    • 2001
  • Oleamide (cis-9-octadecenamide) is endogenous primary amide of fatty acid that is produced in small amounts in animal brains. It is known to induce sleep and to lower temperature by destroying the lipid plasma membrane structure of cells, thereby disclosing gap junction channels. To develop a new biological production method for oleamide, a screening program was conducted to isolate a microorganism producing oleamide. Among 1,500 soil microorganisms tested, KK90378 exhibited a potent positive reaction with Dragendoff`s reagent, used to detect the primary amide of oleamide. KK90378 was identified as a Streptomyces species based on cultural and morpohological characteristics, the presence of diaminopimelic acid in the cell wall, and the sugar patterns for the whole-cell extrat. Streptomyces sp. KK90378 produced oleamide 3 days after culture at $28^{\circ}C$, pH 7.2 A series of purification steps, including hexane extraction, silica gel column, and preparative thin layer chromatographies, were performed for the purification of oleamide. A spectrophotometric analysis using $^1H$, $^13C$-NMR, and GC-MS confirmed that the chemical structure of the purified oleamide was identical to that of authentic oleamide.

  • PDF

Comparison of alveolar ridge preservation methods using three-dimensional micro-computed tomographic analysis and two-dimensional histometric evaluation

  • Park, Young-Seok;Kim, Sungtae;Oh, Seung-Hee;Park, Hee-Jung;Lee, Sophia;Kim, Tae-Il;Lee, Young-Kyu;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • 제44권2호
    • /
    • pp.143-148
    • /
    • 2014
  • Purpose: This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Materials and Methods: Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Results: Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. Conclusion: These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.

북극 스발바드 군도 콩스피요르드에서 채집한 해조류 추출물의 항산화 활성 (Antioxidant Activity of Seaweed Extracts from Kongsfjorden, an Inlet in the Arctic's Svalbard Archipelago)

  • 이정임;김유아;공창숙;예성수;한태준;강성호;김지희;서영완
    • Ocean and Polar Research
    • /
    • 제31권2호
    • /
    • pp.213-218
    • /
    • 2009
  • We examined the intracellular antioxidative effects of 20 Arctic seaweed extracts in Raw 264.7 cells. Each seaweed species was subjected to extraction using acetone/dichloromethane and methanol, respectively, after which the extracts were combined and used as the test sample. The antioxidant ability of all 20 seaweeds extracts was evaluated using four different activity tests, including the degree of occurrence of intracellular reactive oxygen species (ROS), $ONOO^-$, and lipid peroxidation in Raw 264.7 cells, as well as the extent of oxidative damage of genomic DNA purified from Raw 264.7 cells. Crude extracts from Monostroma obscurum, Alaria esculnta, Laminaria digitata, Desmarestia aculeata, Chorda filum, Ptilota seriata, Phycidrys rubens, Devaleraea ramentacea and Palmaria palmata exhibited significant scavenging effects on the generation of intracellular ROS. Among them, Monostroma obscurum and Phycidrys rubens significantly inhibited membrane lipid peroxidation and DNA oxidation. Moreover, Phycidrys rubens exhibited scavenging effects on peroxynitrite generated from SIN-1.

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • 생태와환경
    • /
    • 제49권2호
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

도라지 종자 추출물의 처리가 제2형 당뇨 db/db 마우스의 혈당개선에 미치는 효과 (Improvement of blood glucose control in type 2 diabetic db/db mice using Platycodon grandiflorum seed extract)

  • 김태영;김석중;임지영
    • 한국식품과학회지
    • /
    • 제52권1호
    • /
    • pp.81-88
    • /
    • 2020
  • PGSE의 혈당조절 효과를 평가하기 위하여 제2형 당뇨 동물모델을 이용하여 8주간의 동물실험을 진행한 결과, 고농도 PGSE(600 mg/kg)의 투여는 경구 포도당 내성 및 혈당 수준을 유의적으로 감소시켰으며(p<0.05), 당화혈색소도 유의적으로 낮은 수준을 유지시켰다(p<0.05). 또한, 혈청 인슐린과 렙틴 농도 역시 대조군과 비교하여 PGSE 고농도 처리군에서 유의적으로 감소하였다(p<0.05). PGSE 투여는 db/db 마우스의 골격근에서 인슐린 의존적 세포신호전달경로를 유의적으로 활성화시켰으며, AMPK 인산화를 촉진시키고, 골격근내 포도당 흡수를 위한 GLUT4의 세포막으로의 전이를 대조군 대비 약 1.7배 증가시켰다. 이러한 결과를 근거로 할 때 PGSE는 항 당뇨병 치료제로서의 잠재적 가능성을 가진 것으로 판단된다.

H2O2로 유발된 C6 신경교세포 사멸에 대한 총명공진단의 보호 효과 (Protective Effects of Chongmyunggongjin-dan on H2O2-induced C6 Glial Cell Death)

  • 황규상;신용진
    • 대한한방내과학회지
    • /
    • 제41권1호
    • /
    • pp.44-58
    • /
    • 2020
  • Objectives: This study was conducted to identify the protective effects of Chongmyunggongjin-dan (CMGJD) on Hydrogen peroxide (H2O2)-induced apoptosis mechanisms in C6 glial cells. Method: We used CMGJD after distilled water extraction, filtration, and lyophilization. The ROS scavenging effect was examined by fluorescence microscopy. Expression levels of proteins related to ROS generation were investigated by western blotting. Functional changes in organelles related to Reactive oxygen species (ROS) generation were investigated by immunoblotting and by verifying expression level of relevant enzymes. Results: The CMGJD extract protected the cells against H2O2-induced morphological changes and DNA fragmentation, inhibited the increase of Heme_oxygenase-1(HO-1) and the decrease in catalase, protected against the loss of mitochondrial membrane potential, inhibited disturbances of lysosomal function, and induced an increase in peroxisomes. Conclusion: CMGJD was confirmed to have a protective effect on H2O2-induced C6 glial cell death possibly by blocking the pathways causing damage to subcellular organelles, such as mitochondria, lysosomes, and peroxisomes. We assume that CMGJD will be effective for the prevention and treatment of ischemic stroke in a clinical environment.

Remediation of heavy metal-contaminated soils using eco-friendly nano-scale chelators

  • Lim, Heejun;Park, Sungyoon;Yang, Jun Won;Cho, Wooyoun;Lim, Yejee;Park, Young Goo;Kwon, Dohyeong;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.137-146
    • /
    • 2018
  • Soil washing is one of the most frequently used remediation technologies for heavy metal-contaminated soils. Inorganic and organic acids and chelating agents that can enhance the removal of heavy metals from contaminated soils have been employed as soil washing agents. However, the toxicity, low removal efficiency and high cost of these chemicals limit their use. Given that humic substance (HS) can effectively chelate heavy metals, the development of an eco-friendly, performance-efficient and cost-effective soil washing agent using a nano-scale chelator composed of HS was examined in this study. Copper (Cu) and lead (Pb) were selected as target heavy metals. In soil washing experiments, HS concentration, pH, soil:washing solution ratio and extraction time were evaluated with regard to washing efficiency and the chelation effect. The highest removal rates by soil washing (69% for Cu and 56% for Pb) were achieved at an HS concentration of 1,000 mg/L and soil:washing solution ratio of 1:25. Washing with HS was found to be effective when the pH value was higher than 8, which can be attributed to the increased chelation effect between HS and heavy metals at the high pH range. In contrast, the washing efficiency decreased markedly in the low pH range due to HS precipitation. The chelation capacities for Cu and Pb in the aqueous phase were determined to be 0.547mmol-Cu/g-HS and 0.192mmol-Pb/g-HS, respectively.