• 제목/요약/키워드: Membrane bioreactor (MBR)

검색결과 124건 처리시간 0.028초

침지형 막분리 활성 슬러지법에 따른 막 오염 특성 (Characteristics of Fouling in a Submerged Membrane Bioreactor Activated Sludge Process)

  • 김대식;강종석;김기연;이영무
    • 멤브레인
    • /
    • 제11권4호
    • /
    • pp.170-178
    • /
    • 2001
  • 상전환 방법에 의해 PVC계 MF막을 제조하여 환성슬러지가 포함된 폐수 처리용 MBR (Membrane bioreactor)에 적용하였다. 막 제조시 첨가제의 농도에 따른 막 특성을 확인한 결과 첨가제의 농도가 증가할수록 기공 크기가 증가하였으며 친수화도 역시 향상되었다. MBR의 내부 환경변화에 따른 실험을 통해 제조한 막의 투과 성능 및 막에 발생하는 막 오염 거동을 조사하였다. 사상균의 생성으로 인한 Sludge bulking 시 막 오염 현상이 가속화되었으며, 이 때 각 시료의 Rc을 조사한 결과 CP-0 > CP-1.0 > CP-1.5의 순으로 나타났고, 정상상태와 비교하여 sludge busking시 Rc값은 3.5~7배가지 증가하였다. 표면 특성이나 투과 유속면에서 PVP 1.5 wt% (CP-1.5)를 첨가하였을 때가 가장 적합하였다. 평균 투과 유속은 시료 모두에서 12(${\pm}$2) L/$m^2$hr 정도였으며, 평균 COD 제거율은 98.8% 정도를 나타내었다 MBR 운전에 있어 sludge bulking시 사상균이 차지하는 비율과 미생물의 모양과 크기에 따라 막 오염은 가속화 되었고, 투과 유속 감소를 보였다. 따라서 막 여과 특성은 막의 친수화 정도와 MBR 내부 미생물의 성장 조건과 환경에 의해 결정되는 것을 알 수 있었다.

  • PDF

Nitrifying membrane bioreactor에서의 막 오염 및 질산화 특성 (Characteristics of Membrane Fouling and Nitrification in Nitrifying Membrane Bioreactor)

  • 임경조;홍순호;유익근
    • 한국환경과학회지
    • /
    • 제20권9호
    • /
    • pp.1079-1085
    • /
    • 2011
  • The purpose of this study is to find the operational characteristics of nitrifier-dominated membrane bioreactor (MBR), which has been extensively studied for organic removal, especially in terms of nitrite ($NO_2$-N) build-up and membrane fouling. Membrane fouling is one of the important factor which determines the economics of MBR system. The characteristics of membrane fouling was monitored in terms of the fouling indices such as sludge volume index (SVI), the concentration of total organic carbon (TOC) and extracellular polymeric substances (EPS) in a membrane permeate or sludge extract, the absorbance of supernatant at 260 nm. Most of index values except for protein concentration in EPS had a close relation with the increase of suction pressure and SVI value. Nitrifying MBR was superior to the conventional organic-oxidizing MBR in terms of membrane fouling since the fouling index value of nitrifying MBR was lower than that of BOD-oxidizing MBR.

침지형 분리막을 사용한 오수처리

  • 최광호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 제6회 하계 Workshop (98 한국막학회, 국립환경연구원 국제 Workshop, 수자원 보전과 막분리 공정)
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

Membrane Bioreactor를 이용한 폭발성 물질의 가수분해 부산물의 탈질과정에의 적용 (Application of a Membrane Bioreactor in Denitrification of Explosives Hydrolysates)

  • 조경덕
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.113-122
    • /
    • 2002
  • A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic crossflow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX, The wastewater was formulated the same as RDX hydrolysates, and consisted of acetate, formate, formaldehyde as carbon sources and nitrite, nitrate as electron accepters. The MBR system removed 80 to 90% of these carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressures, temperatures, suspended solids concentration, and organic loading rate in order to maximize treatment efficiency and permeate flux. Increasing transmembrane pressure and temperature did not improve membrane flux significantly. Increasing biomass concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was $0.72kg\;COD/m^3/day$, and the maximum F/M ratio was 0.50 kg N/kg MLSS/day and 1.82 kg COD/kg MLSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and $2.0m^3/m^2/day$ and was maintained by routine backwashing every 3 to 4 day. Backwashing with 2% NaOCl solution every fourth or fifth backwashing cycle was able to restore membrane flux to its original value.

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Alighardashi, Abolghasem;Pakan, Mahyar;Jamshidi, Shervin;Shariati, Farshid Pajoum
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.517-528
    • /
    • 2017
  • This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.

Utilization of aerobic granulation to mitigate membrane fouling in MBRs

  • Iorhemen, Oliver T.;Hamza, Rania A.;Tay, Joo Hwa
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.395-409
    • /
    • 2017
  • Membrane bioreactor (MBR) is a compact and efficient wastewater treatment and reclamation technology; but, it is limited by membrane fouling. The control of membrane fouling significantly increases operational and maintenance costs. Bacteria and their byproducts - extracellular polymeric substances (EPS) - are major contributors to membrane fouling in MBRs. A recent attempt at fouling mitigation is the development of aerobic granular sludge membrane bioreactor (AGMBR) through the integration of a novel biotechnology - aerobic granulation - and MBR. This paper provides an overview on the development of AGMBR to mitigate membrane fouling caused by bacteria and EPS. In AGMBR, EPS are used up in granule formation; and, the rigid structure of granules provides a surface for bacteria to attach to rather than the membrane surface. Preliminary research on AGMBR using synthetic wastewater show remarkable membrane fouling reduction compared to conventional MBR, thus improved membrane filtration. Enhanced performance in AGMBR using actual municipal wastewater at pilot-scale has also been reported. Therefore, further research is needed to determine AGMBR optimal operational conditions to enhance granule stability in long-term operations and in full-scale applications.

실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가 (Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor)

  • 김승원;최정동
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.325-334
    • /
    • 2023
  • Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.

Recent advances and future potential of anaerobic ceramic membrane bioreactors for wastewater treatment: A review

  • Cha, Minju;Kim, Soyoun;Park, Chanhyuk
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.31-39
    • /
    • 2020
  • Anaerobic membrane bioreactor (AnMBR) treatment has been widely studied in recent years because of the potential for production of bio-energy from wastewater and energy-positive operation of wastewater treatment plants. Several AnMBR systems, including those that incorporate ceramic membranes, take advantage of enhanced water permeability and low membrane fouling potentials. Given that differences in the ceramic membranes may influence the results of AnMBR studies, relevant details are discussed in this review, which focuses on the profiles of common ceramic membranes used in AnMBR, treatment and filtration performances of different anaerobic ceramic membrane bioreactors (AnCMBRs), and the membrane fouling mitigation methods available for effective AnCMBRs operation. The aim of this review is to provide a comprehensive summary of AnCMBR performance, feed wastewater characteristics, operating conditions, and the methods available for effective fouling mitigation.