Browse > Article
http://dx.doi.org/10.12989/mwt.2020.11.1.031

Recent advances and future potential of anaerobic ceramic membrane bioreactors for wastewater treatment: A review  

Cha, Minju (Department of Environmental Science and Engineering, Ewha Womans University)
Kim, Soyoun (Department of Environmental Science and Engineering, Ewha Womans University)
Park, Chanhyuk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Membrane and Water Treatment / v.11, no.1, 2020 , pp. 31-39 More about this Journal
Abstract
Anaerobic membrane bioreactor (AnMBR) treatment has been widely studied in recent years because of the potential for production of bio-energy from wastewater and energy-positive operation of wastewater treatment plants. Several AnMBR systems, including those that incorporate ceramic membranes, take advantage of enhanced water permeability and low membrane fouling potentials. Given that differences in the ceramic membranes may influence the results of AnMBR studies, relevant details are discussed in this review, which focuses on the profiles of common ceramic membranes used in AnMBR, treatment and filtration performances of different anaerobic ceramic membrane bioreactors (AnCMBRs), and the membrane fouling mitigation methods available for effective AnCMBRs operation. The aim of this review is to provide a comprehensive summary of AnCMBR performance, feed wastewater characteristics, operating conditions, and the methods available for effective fouling mitigation.
Keywords
anaerobic ceramic membrane bioreactor; ceramic membrane; feed wastewater characteristics; fouling mitigation method;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Arabi, S. and Nakhla, G. (2009), "Impact of cation concentrations on fouling in membrane bioreactors", J. Membr. Sci., 343(1-2), 110-118. https://doi.org/10.1016/j.memsci.2009.07.016.   DOI
2 Pang, C., He, C.H., Hu, Z.H., Yuan, S.J. and Wang, W. (2019), "Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor", Frontiers of Environ. Sci. Eng., 13(4). https://doi.org/ARTN 5010.1007/s11783-019-1131-6.   DOI
3 Smith, A.L., Skerlos, S.J. and Raskin, L. (2013), "Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater", Water Res., 47(4), 1655-1665. https://doi.org/10.1016/j.watres.2012.12.028.   DOI
4 Smith, A.L., Skerlos, S.J. and Raskin, L. (2015), "Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 degrees C to 3 degrees C", Environ.l Science-Water Res, Technol., 1(1), 56-64. https://doi.org/10.1039/c4ew00070f.   DOI
5 Souza, C.L., Chernicharo, C.A.L. and Aquino, S.F. (2011), "Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions", Water Sci Tech., 64(11), 2259-2264. https://doi.org/10.2166/wst.2011.695.   DOI
6 Truong, H.T.B., Nguyen, P.T.T. and Bui, H.M. (2018), "Integration of aerobic granular sludge and membrane filtration for tapioca processing wastewater treatment: fouling mechanism and granular stability", J. Water Supply Res. Technol. Aqua, 67(8), 846-857. https://doi.org/10.2166/aqua.2018.104.   DOI
7 Wang, S., Ma, C., Pang, C., Hu, Z. and Wang, W. (2018), "Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol- and quinoline-containing wastewater: granular activated carbon vs polyaluminum chloride", Environ. Sci. Pollut. Res. Int., https://doi.org/10.1007/s11356-018-3802-4.
8 Wang, W., Wang, S., Ren, X., Hu, Z. and Yuan, S. (2017), "Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor", Environ. Sci. Pollut. Res. Int., 24(33), 26125-26135. https://doi.org/10.1007/s11356-017-0284-8.   DOI
9 Aslam, M., Charfi, A., Lesage, G., Heran, M. and Kim, J. (2017a), "Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling", Chem. Eng. J., 307, 897-913. https://doi.org/10.1016/j.cej.2016.08.144.   DOI
10 Aslam, M., McCarty, P.L., Shin, C., Bae, J. and Kim, J. (2017b), "Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment", Bioresour. Technol., 240, 33-41. https://doi.org/10.1016/j.biortech.2017.03.017.   DOI
11 Aslam, M., Yang, P., Lee, P.H. and Kim, J. (2018), "Novel staged anaerobic fluidized bed ceramic membrane bioreactor: Energy reduction, fouling control and microbial characterization", J. Membr. Sci., 553, 200-208. https://doi.org/10.1016/j.memsci.2018.02.038.   DOI
12 Duppenbecker, B., Engelhart, M. and Cornel, P. (2017a), "Fouling mitigation in Anaerobic Membrane Bioreactor using fluidized glass beads: Evaluation fitness for purpose of ceramic membranes", J. Membr. Sci., 537, 69-82. https://doi.org/10.1016/j.memsci.2017.05.018.   DOI
13 Chaikasem, S., Abeynayaka, A. and Visvanathan, C. (2014), "Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor", Bioresour. Technol., 168, 100-105. https://doi.org/10.1016/j.biortech.2014.04.023.   DOI
14 Cho, K., Jeong, Y., Seo, K.W., Lee, S., Smith, A.L., Shin, S.G., Cho, S.K. and Park, C. (2018), "Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment", Bioresour. Technol., 256, 137-144. https://doi.org/10.1016/j.biortech.2018.02.015.   DOI
15 Cho, K., Seo, K.W., Shin, S.G., Lee, S. and Park, C. (2019), "Process stability and comparative rDNA/rRNA community analyses in an anaerobic membrane bioreactor with silicon carbide ceramic membrane applications", Sci. Total. Environ., 666, 155-164. https://doi.org/10.1016/j.scitotenv.2019.02.166.   DOI
16 Ha, J.H., Bukhari, S.Z.A., Lee, J., Song, I.H. and Park, C. (2016), "Preparation processes and characterizations of alumina-coated alumina support layers and alumina-coated natural material-based support layers for microfiltration", Ceramics International, 42(12), 13796-13804. https://doi.org/10.1016/j.ceramint.2016.05.181.   DOI
17 Duppenbecker, B., Kale, S., Engelhart, M. and Cornel, P. (2017b), "Fluidized glass beads reduce fouling in a novel anaerobic membrane bioreactor", Water Sci. Technol., 76(3-4), 953-962. https://doi.org/10.2166/wst.2017.274.   DOI
18 Gao, D.-W., Hu, Q., Yao, C. and Ren, N.-Q. (2014), "Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions", Bioresour. Technol., 159, 193-198. https://doi.org/10.1016/j.biortech.2014.02.086.   DOI
19 Garcia, I.M., Mokosch, M., Soares, A., Pidou, M. and Jefferson, B. (2013), "Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates", Water Res., 47(14), 4853-4860. https://doi.org/10.1016/j.watres.2013.05.008.   DOI
20 Huang, Z., Ong, S.L. and Ng, H.Y. (2011), "Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling", Water Res., 45(2), 705-713. https://doi.org/10.1016/j.watres.2010.08.035.   DOI
21 Jeong, Y., Cho, K., Kwon, E.E., Tsang, Y.F., Rinklebe, J. and Park, C. (2017a), "Evaluating the feasibility of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors", Chem. Eng. J., 328, 567-573. https://doi.org/10.1016/j.cej.2017.07.080.   DOI
22 Jeong, Y., Hermanowicz, S.W. and Park, C. (2017b), "Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater", Water Res., 123, 86-95. https://doi.org/10.1016/j.watres.2017.06.049.   DOI
23 Lin, H.J., Peng, W., Zhang, M.J., Chen, J.R., Hong, H.C. and Zhang, Y. (2013), "A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives", Desalination 314, 169-188. https://doi.org/10.1016/j.desal.2013.01.019.   DOI
24 Jeong, Y., Kim, Y., Jin, Y., Hong, S. and Park, C. (2018), "Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater", Separation Purification Technol., 199, 182-188. https://doi.org/10.1016/j.seppur.2018.01.057.   DOI
25 Jung, J., Shin, B., Lee, J.W., Park, K.Y., Won, S. and Cho, J. (2019), "Membrane fouling and sludge characteristics in submerged membrane bioreactor under low temperature", Membr. Water Treat., 10(5), 331-338. https://doi.org/10.12989/MWT.2019.10.3.239.   DOI
26 Kumar, R.V., Ghoshal, A.K. and Pugazhenthi, G. (2015), "Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment", J. Membr. Sci., 490, 92-102. https://doi.org/10.1016/j.memsci.2015.04.066.   DOI
27 Li, W.W., Wang, Y.K., Sheng, G.P., Gui, Y.X., Yu, L., Xie, T.Q. and Yu, H.Q. (2012), "Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment", Bioresour. Technol., 122, 22-26. https://doi.org/10.1016/j.biortech.2012.02.018.   DOI
28 Liebana, R., Modin, O., Persson, F. and Wilen, B.M. (2018), "Integration of aerobic granular sludge and membrane bioreactors for wastewater treatment", Critical Rev., Biotechnol., 38(6), 801-816. https://doi.org/10.1080/07388551.2017.1414140.   DOI
29 Mei, X., Quek, P.J., Wang, Z. and Ng, H.Y. (2017), "Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor", Bioresour. Technol., 240, 25-32. https://doi.org/10.1016/j.biortech.2017.02.052.   DOI
30 Yee, T.L., Rathnayake, T. and Visvanathan, C. (2019), "Performance Evaluation of a Thermophilic Anaerobic Membrane Bioreactor for Palm Oil Wastewater Treatment", Membranes, 9(4), 55. https://doi.org/10.3390/membranes9040055.   DOI
31 Yu, Z.Y., Song, Z.H., Wen, X.H. and Huang, X. (2015), "Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor", J. Membr. Sci., 479, 20-27. https://doi.org/10.1016/j.memsci.2015.01.016.   DOI
32 Zhang, W., Liu, F., Wang, D. and Jin, Y. (2018), "Impact of reactor configuration on treatment performance and microbial diversity in treating high-strength dyeing wastewater: Anaerobic flat-sheet ceramic membrane bioreactor versus upflow anaerobic sludge blanket reactor", Bioresour. Technol., 269, 269-275. https://doi.org/10.1016/j.biortech.2018.08.126.   DOI
33 Yue, X., Koh, Y.K. and Ng, H.Y. (2015a), "Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater", Water. Res., 86, 96-107. https://doi.org/10.1016/j.watres.2015.07.038.   DOI
34 Yue, X., Koh, Y.K. and Ng, H.Y. (2015b), "Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR)", Water Sci. Technol., 72(12), 2301-2307. https://doi.org/10.2166/wst.2015.448.   DOI
35 Yue, X., Koh, Y.K.K. and Ng, H.Y. (2018), "Membrane fouling mitigation by NaClO-assisted backwash in anaerobic ceramic membrane bioreactors for the treatment of domestic wastewater", Bioresour. Technol., 268, 622-632. https://doi.org/10.1016/j.biortech.2018.08.003.   DOI
36 Zhou, J.N., Zhang, X.Z., Wang, Y.Q., Larbot, A. and Hu, X.B. (2010), "Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite", J. Porous Mater., 17(1), 1-9. https://doi.org/10.1007/s10934-008-9258-z.   DOI
37 Zonoozi, M.H., Moghaddam, M.R.A. and Maknoon, R. (2014), "Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs", Membr. Water Treat., 5(4), 281-293. https://doi.org/10.12989/MWT.2014.5.4.281.   DOI