1 |
Arabi, S. and Nakhla, G. (2009), "Impact of cation concentrations on fouling in membrane bioreactors", J. Membr. Sci., 343(1-2), 110-118. https://doi.org/10.1016/j.memsci.2009.07.016.
DOI
|
2 |
Pang, C., He, C.H., Hu, Z.H., Yuan, S.J. and Wang, W. (2019), "Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor", Frontiers of Environ. Sci. Eng., 13(4). https://doi.org/ARTN 5010.1007/s11783-019-1131-6.
DOI
|
3 |
Smith, A.L., Skerlos, S.J. and Raskin, L. (2013), "Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater", Water Res., 47(4), 1655-1665. https://doi.org/10.1016/j.watres.2012.12.028.
DOI
|
4 |
Smith, A.L., Skerlos, S.J. and Raskin, L. (2015), "Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 degrees C to 3 degrees C", Environ.l Science-Water Res, Technol., 1(1), 56-64. https://doi.org/10.1039/c4ew00070f.
DOI
|
5 |
Souza, C.L., Chernicharo, C.A.L. and Aquino, S.F. (2011), "Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions", Water Sci Tech., 64(11), 2259-2264. https://doi.org/10.2166/wst.2011.695.
DOI
|
6 |
Truong, H.T.B., Nguyen, P.T.T. and Bui, H.M. (2018), "Integration of aerobic granular sludge and membrane filtration for tapioca processing wastewater treatment: fouling mechanism and granular stability", J. Water Supply Res. Technol. Aqua, 67(8), 846-857. https://doi.org/10.2166/aqua.2018.104.
DOI
|
7 |
Wang, S., Ma, C., Pang, C., Hu, Z. and Wang, W. (2018), "Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol- and quinoline-containing wastewater: granular activated carbon vs polyaluminum chloride", Environ. Sci. Pollut. Res. Int., https://doi.org/10.1007/s11356-018-3802-4.
|
8 |
Wang, W., Wang, S., Ren, X., Hu, Z. and Yuan, S. (2017), "Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor", Environ. Sci. Pollut. Res. Int., 24(33), 26125-26135. https://doi.org/10.1007/s11356-017-0284-8.
DOI
|
9 |
Aslam, M., Charfi, A., Lesage, G., Heran, M. and Kim, J. (2017a), "Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling", Chem. Eng. J., 307, 897-913. https://doi.org/10.1016/j.cej.2016.08.144.
DOI
|
10 |
Aslam, M., McCarty, P.L., Shin, C., Bae, J. and Kim, J. (2017b), "Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment", Bioresour. Technol., 240, 33-41. https://doi.org/10.1016/j.biortech.2017.03.017.
DOI
|
11 |
Aslam, M., Yang, P., Lee, P.H. and Kim, J. (2018), "Novel staged anaerobic fluidized bed ceramic membrane bioreactor: Energy reduction, fouling control and microbial characterization", J. Membr. Sci., 553, 200-208. https://doi.org/10.1016/j.memsci.2018.02.038.
DOI
|
12 |
Duppenbecker, B., Engelhart, M. and Cornel, P. (2017a), "Fouling mitigation in Anaerobic Membrane Bioreactor using fluidized glass beads: Evaluation fitness for purpose of ceramic membranes", J. Membr. Sci., 537, 69-82. https://doi.org/10.1016/j.memsci.2017.05.018.
DOI
|
13 |
Chaikasem, S., Abeynayaka, A. and Visvanathan, C. (2014), "Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor", Bioresour. Technol., 168, 100-105. https://doi.org/10.1016/j.biortech.2014.04.023.
DOI
|
14 |
Cho, K., Jeong, Y., Seo, K.W., Lee, S., Smith, A.L., Shin, S.G., Cho, S.K. and Park, C. (2018), "Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment", Bioresour. Technol., 256, 137-144. https://doi.org/10.1016/j.biortech.2018.02.015.
DOI
|
15 |
Cho, K., Seo, K.W., Shin, S.G., Lee, S. and Park, C. (2019), "Process stability and comparative rDNA/rRNA community analyses in an anaerobic membrane bioreactor with silicon carbide ceramic membrane applications", Sci. Total. Environ., 666, 155-164. https://doi.org/10.1016/j.scitotenv.2019.02.166.
DOI
|
16 |
Ha, J.H., Bukhari, S.Z.A., Lee, J., Song, I.H. and Park, C. (2016), "Preparation processes and characterizations of alumina-coated alumina support layers and alumina-coated natural material-based support layers for microfiltration", Ceramics International, 42(12), 13796-13804. https://doi.org/10.1016/j.ceramint.2016.05.181.
DOI
|
17 |
Duppenbecker, B., Kale, S., Engelhart, M. and Cornel, P. (2017b), "Fluidized glass beads reduce fouling in a novel anaerobic membrane bioreactor", Water Sci. Technol., 76(3-4), 953-962. https://doi.org/10.2166/wst.2017.274.
DOI
|
18 |
Gao, D.-W., Hu, Q., Yao, C. and Ren, N.-Q. (2014), "Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions", Bioresour. Technol., 159, 193-198. https://doi.org/10.1016/j.biortech.2014.02.086.
DOI
|
19 |
Garcia, I.M., Mokosch, M., Soares, A., Pidou, M. and Jefferson, B. (2013), "Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates", Water Res., 47(14), 4853-4860. https://doi.org/10.1016/j.watres.2013.05.008.
DOI
|
20 |
Huang, Z., Ong, S.L. and Ng, H.Y. (2011), "Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling", Water Res., 45(2), 705-713. https://doi.org/10.1016/j.watres.2010.08.035.
DOI
|
21 |
Jeong, Y., Cho, K., Kwon, E.E., Tsang, Y.F., Rinklebe, J. and Park, C. (2017a), "Evaluating the feasibility of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors", Chem. Eng. J., 328, 567-573. https://doi.org/10.1016/j.cej.2017.07.080.
DOI
|
22 |
Jeong, Y., Hermanowicz, S.W. and Park, C. (2017b), "Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater", Water Res., 123, 86-95. https://doi.org/10.1016/j.watres.2017.06.049.
DOI
|
23 |
Lin, H.J., Peng, W., Zhang, M.J., Chen, J.R., Hong, H.C. and Zhang, Y. (2013), "A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives", Desalination 314, 169-188. https://doi.org/10.1016/j.desal.2013.01.019.
DOI
|
24 |
Jeong, Y., Kim, Y., Jin, Y., Hong, S. and Park, C. (2018), "Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater", Separation Purification Technol., 199, 182-188. https://doi.org/10.1016/j.seppur.2018.01.057.
DOI
|
25 |
Jung, J., Shin, B., Lee, J.W., Park, K.Y., Won, S. and Cho, J. (2019), "Membrane fouling and sludge characteristics in submerged membrane bioreactor under low temperature", Membr. Water Treat., 10(5), 331-338. https://doi.org/10.12989/MWT.2019.10.3.239.
DOI
|
26 |
Kumar, R.V., Ghoshal, A.K. and Pugazhenthi, G. (2015), "Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment", J. Membr. Sci., 490, 92-102. https://doi.org/10.1016/j.memsci.2015.04.066.
DOI
|
27 |
Li, W.W., Wang, Y.K., Sheng, G.P., Gui, Y.X., Yu, L., Xie, T.Q. and Yu, H.Q. (2012), "Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment", Bioresour. Technol., 122, 22-26. https://doi.org/10.1016/j.biortech.2012.02.018.
DOI
|
28 |
Liebana, R., Modin, O., Persson, F. and Wilen, B.M. (2018), "Integration of aerobic granular sludge and membrane bioreactors for wastewater treatment", Critical Rev., Biotechnol., 38(6), 801-816. https://doi.org/10.1080/07388551.2017.1414140.
DOI
|
29 |
Mei, X., Quek, P.J., Wang, Z. and Ng, H.Y. (2017), "Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor", Bioresour. Technol., 240, 25-32. https://doi.org/10.1016/j.biortech.2017.02.052.
DOI
|
30 |
Yee, T.L., Rathnayake, T. and Visvanathan, C. (2019), "Performance Evaluation of a Thermophilic Anaerobic Membrane Bioreactor for Palm Oil Wastewater Treatment", Membranes, 9(4), 55. https://doi.org/10.3390/membranes9040055.
DOI
|
31 |
Yu, Z.Y., Song, Z.H., Wen, X.H. and Huang, X. (2015), "Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor", J. Membr. Sci., 479, 20-27. https://doi.org/10.1016/j.memsci.2015.01.016.
DOI
|
32 |
Zhang, W., Liu, F., Wang, D. and Jin, Y. (2018), "Impact of reactor configuration on treatment performance and microbial diversity in treating high-strength dyeing wastewater: Anaerobic flat-sheet ceramic membrane bioreactor versus upflow anaerobic sludge blanket reactor", Bioresour. Technol., 269, 269-275. https://doi.org/10.1016/j.biortech.2018.08.126.
DOI
|
33 |
Yue, X., Koh, Y.K. and Ng, H.Y. (2015a), "Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater", Water. Res., 86, 96-107. https://doi.org/10.1016/j.watres.2015.07.038.
DOI
|
34 |
Yue, X., Koh, Y.K. and Ng, H.Y. (2015b), "Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR)", Water Sci. Technol., 72(12), 2301-2307. https://doi.org/10.2166/wst.2015.448.
DOI
|
35 |
Yue, X., Koh, Y.K.K. and Ng, H.Y. (2018), "Membrane fouling mitigation by NaClO-assisted backwash in anaerobic ceramic membrane bioreactors for the treatment of domestic wastewater", Bioresour. Technol., 268, 622-632. https://doi.org/10.1016/j.biortech.2018.08.003.
DOI
|
36 |
Zhou, J.N., Zhang, X.Z., Wang, Y.Q., Larbot, A. and Hu, X.B. (2010), "Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite", J. Porous Mater., 17(1), 1-9. https://doi.org/10.1007/s10934-008-9258-z.
DOI
|
37 |
Zonoozi, M.H., Moghaddam, M.R.A. and Maknoon, R. (2014), "Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs", Membr. Water Treat., 5(4), 281-293. https://doi.org/10.12989/MWT.2014.5.4.281.
DOI
|