DOI QR코드

DOI QR Code

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Received : 2017.02.04
  • Accepted : 2017.04.08
  • Published : 2017.11.25

Abstract

This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.

Keywords

References

  1. Acharya, C., Nakhla, G. and Bassi, A. (2006), "Operational optimization and mass balances in a two-stage MBR treating high strength pet food wastewater", J. Environ. Eng., 132(7), 810-817. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(810)
  2. APHA (2003), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, USA.
  3. Awan, S.F., Zhang, B., Zhong, Z., Gao, L. and Chen, X. (2015), "Industrial wastewater treatment by using MBR (Membrane Bioreactor) review study", J. Environ. Protect., 6(6), 584-598 https://doi.org/10.4236/jep.2015.66053
  4. Aygun, A., Yenisoy-Karakas, S. and Duman, I. (2003), "Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties", Microp. Mesop. Mater., 66(2), 189-195. https://doi.org/10.1016/j.micromeso.2003.08.028
  5. Buha, D.M., Atalia, K.R., Baagwala, W.Y. and Shah, N.K. (2015). "Review on wastewater treatment technologies for nitrogen removal", Global J. Multidisc. Stud., 4(6), 299-318.
  6. De Gisi, S., Galasso, M. and De Feo, G. (2009), "Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane", Desalinat., 249(1), 337-342. https://doi.org/10.1016/j.desal.2009.03.014
  7. Fazeli, M., Kazemi, Balgeshiri, M.J. and Alighardashi, A. (2016), "Water pollutants adsorption through an enhanced activated carbon derived from agricultural waste", Arch. Hygiene Sci., 5(4), 286-294.
  8. Feng, F., Xu, Z., Li, X., You, W. and Zhen, Y. (2010), "Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process", J. Environ. Sci., 22(11), 1657-1665. https://doi.org/10.1016/S1001-0742(09)60303-X
  9. Gallego-Molina, A., Mendoza-Roca, J.A., Aguado, D. and Galiana-Aleixandre, M.V. (2013), "Reducing pollution from the deliming-bating operation in a tannery. Wastewater reuse by microfiltration membranes", Chem. Eng. Res. Des., 91(2), 369-376 https://doi.org/10.1016/j.cherd.2012.08.003
  10. Gerardi M.H. (2003), Nitrification and Denitrification in the Activated Sludge Process, Wiley Interscience, New York, USA.
  11. Gieseke, A., Tarre, S., Green, M. and De Beer, D. (2006), "Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance", Appl. Environ. Microbio., 72(6), 4283-4292. https://doi.org/10.1128/AEM.00241-06
  12. Hashisho, J., El-Fadel, M., Al-Hindi, M., Salam, D. and Alameddine, I. (2016), "Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate", Waste Manage., 55, 249-256. https://doi.org/10.1016/j.wasman.2015.12.016
  13. Jamshidi, S., Akbarzadeh, A., Woo, K.S. and Valipour, A. (2014), "Wastewater treatment using integrated anaerobic baffled reactor and bio-rack wetland planted with phragmites sp. and Typha sp.", J. Environ. Hlth. Sci. Eng., 12(1), 131-142. https://doi.org/10.1186/s40201-014-0131-5
  14. Judd, S. and Judd, C. (2011), The MBR Book : Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, Butterworth-Heinemann, Oxford, England.
  15. Li, X., Gao, F., Hua, Z., Du, G. and Chen, J. (2005), "Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling", Separ. Purif. Technol., 46(1), 19-25. https://doi.org/10.1016/j.seppur.2005.04.003
  16. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.Q., Hong, H., Chen, J. and Gao, W. (2014), "A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies", J. Membr. Sci., 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034
  17. Liu, Y. and Tay, J.H. (2004), "State of the art of biogranulation technology for wastewater treatment", Biotechnol. Adv., 22(7), 533-563. https://doi.org/10.1016/j.biotechadv.2004.05.001
  18. Ma, C., Yu, S., Shi, W., Tian, W., Heijman, S.G.J. and Rietveld, L.C. (2012), "High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature", Biores. Technol., 113, 136-142 https://doi.org/10.1016/j.biortech.2012.02.007
  19. Mandal, T., Dasgupta, D., Mandal, S. and Datta, S. (2010), "Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process", J. Hazard. Mater., 180(1), 204-211. https://doi.org/10.1016/j.jhazmat.2010.04.014
  20. Munz, G., Gualtiero, M., Salvadori, L., Claudia, B. and Claudio, L. (2008), "Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional activated sludge process) treatment of tannery wastewater", Biores. Technol., 99(18), 8559-8564 https://doi.org/10.1016/j.biortech.2008.04.006
  21. Munz, G., Mori, G., Vannini, C. and Lubello, C. (2010), "Kinetic parameters and inhibition response of ammonia and nitrite oxidizing bacteria in membrane bioreactors and conventional activated sludge processes", Environ. Technol., 31(14), 1557-1564 https://doi.org/10.1080/09593331003793828
  22. Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A., Yuniarto, A. and Olsson, G. (2013), "Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater", Chem. Eng. J., 225, 109-119. https://doi.org/10.1016/j.cej.2013.02.131
  23. Park, H.D., Chang, I.S. and Lee, K.J. (2015), Principles of Membrane Bioreactors for Wastewater Treatment, CRC Press, FL, USA.
  24. Ratanatamskul, C., Suksusieng, N. and Yamamoto, K. (2013), "A prototype IT/BF-MBR (inclined tube/biofilm-membrane bioreactor) for high-rise building wastewater recycling", Desal. Water Treat., 52(4-6), 719-726.
  25. Sabumon, P.C. (2016), "Perspectives on biological treatment of tannery effluent", Adv. Recycl. Waste Manage., 1(1), 1-10.
  26. Tarre, S. and Green, M. (2004), "High-rate nitrification at low pH in suspended-and attached-biomass reactors", Appl. Environ. Microbio., 70(11), 6481-6487. https://doi.org/10.1128/AEM.70.11.6481-6487.2004
  27. Wang, J.G. and Liu, Y.H. (2011), "Study on the treatment of tannery wastewater with the high concentration of ammonia nitrogen by MBR", Appl. Mech. Mater., 71-78, 2186-2189. https://doi.org/10.4028/www.scientific.net/AMM.71-78.2186
  28. Yigit, N.O., Uzal, N., Koseoglu, H., Harman, I., Yuksele,r H., Yetis, U., Civelekoglu, G. and Kitis, M. (2009), "Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor", Desalinat., 240(1-3), 143-150. https://doi.org/10.1016/j.desal.2007.11.071
  29. Yuniarto, A., Noor, Z.Z., Ujang, Z., Olson, G., Aris, A. and Hadibarata, T. (2013), "Bio-fouling reducers for improving the performance of an aerobic submerged membrane bioreactor treating palm oil mill effluent", Desalinat., 316,146-153. https://doi.org/10.1016/j.desal.2013.02.002
  30. Zhang, H., Wang, B., Yu, H., Zhang, L. and Song, L. (2015), "Relation between sludge properties and filterability in MBR: Under infinite SRT", Membr. Water Treat., 6(6), 501-512. https://doi.org/10.12989/mwt.2015.6.6.501

Cited by

  1. Comparing the performance of the conventional and fixed‐bed membrane bioreactors for treating municipal wastewater vol.19, pp.1, 2017, https://doi.org/10.1007/s40201-021-00664-3