• Title/Summary/Keyword: Membrane Stress

Search Result 697, Processing Time 0.024 seconds

Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]

  • Singh, Kashmir;Kumar, Sanjay;Yadav, Sudesh Kumar;Ahuja, Paramvir Singh
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • Tea leaves are major source of catechins—antioxidant flavonoids. Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is one of the important enzymes that catalyzes the reduction of dihydroflavonols to leucoanthocyanins, a key ''late'' step in the biosynthesis of catechins. This manuscript reports characterization of DFR from tea (CsDFR) that comprised 1,413 bp full-length cDNA with ORF of 1,044 bp (115-1,158) and encoding a protein of 347 amino acids. Sequence comparison of CsDFR with earlier reported DFR sequences in a database indicated conservation of 69-87% among amino acid residues. In silico analysis revealed CsDFR to be a membrane-localized protein with a domain (between 16 and 218 amino acids) resembling the NAD-dependent epimerase/dehydratase family. The theoretical molecular weight and isoelectric point of the deduced amino sequence of CsDFR were 38.67 kDa and 6.22, respectively. Upon expression of CsDFR in E. coli, recombinant protein was found to be functional and showed specific activity of 42.85 nmol $min^{-1}$ mg $protein^{-1}$. Expression of CsDFR was maximum in younger rather than older leaves. Expression was down-regulated in response to drought stress and abscisic acid, unaffected by gibberellic acid treatment, but up-regulated in response to wounding, with concomitant modulation of catechins content. This is the first report of functionality of recombinant CsDFR and its expression in tea.

Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways

  • Dey, Tapan;Dutta, Prachurjya;Manna, Prasenjit;Kalita, Jatin;Boruah, Hari Prasanna Deka;Buragohain, Alak Kumar;Unni, Balagopalan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.409-416
    • /
    • 2018
  • Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its anti-proliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, $70{\mu}M$) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.

Cyanidin-3-glucoside inhibits amyloid β25-35-induced neuronal cell death in cultured rat hippocampal neurons

  • Yang, Ji Seon;Jeon, Sujeong;Yoon, Kee Dong;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.689-696
    • /
    • 2018
  • Increasing evidence implicates changes in $[Ca^{2+}]_i$ and oxidative stress as causative factors in amyloid beta ($A{\beta}$)-induced neuronal cell death. Cyanidin-3-glucoside (C3G), a component of anthocyanin, has been reported to protect against glutamate-induced neuronal cell death by inhibiting $Ca^{2+}$ and $Zn^{2+}$ signaling. The present study aimed to determine whether C3G exerts a protective effect against $A{\beta}_{25-35}$-induced neuronal cell death in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague-Dawley rats using MTT assay for cell survival, and caspase-3 assay and digital imaging methods for $Ca^{2+}$, $Zn^{2+}$, MMP and ROS. Treatment with $A{\beta}_{25-35}$ ($20{\mu}M$) for 48 h induced neuronal cell death in cultured rat pure hippocampal neurons. Treatment with C3G for 48 h significantly increased cell survival. Pretreatment with C3G for 30 min significantly inhibited $A{\beta}_{25-35}$-induced $[Zn^{2+}]_i$ increases as well as $[Ca^{2+}]_i$ increases in the cultured rat hippocampal neurons. C3G also significantly inhibited $A{\beta}_{25-35}$-induced mitochondrial depolarization. C3G also blocked the $A{\beta}_{25-35}$-induced formation of ROS. In addition, C3G significantly inhibited the $A{\beta}_{25-35}$-induced activation of caspase-3. These results suggest that cyanidin-3-glucoside protects against amyloid ${\beta}$-induced neuronal cell death by reducing multiple apoptotic signals.

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

A Study on the Oxidative Damage Induced by UVB Irradiation to Mouse Skin (UVB 조사로 인한 마우스 피부조직의 산화적 손상)

  • Rhie Sung-Ja;Kim Young-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.165-172
    • /
    • 2006
  • The backs with a hair cut of 6-week-old healthy ICR male mice were once exposed to a dose of $400mJ/cm^2$ UVB. An acute dermal inflammation was observed, and the inflamed skins were almost completely cured after 6 days of the exposure. At 24 hours after exposure, the epidermal keratinocytes showed a cell-membrane damage with the destruction of intercellular junctions, agglutination of tonofilaments within the cytoplasm and nucleus damage. The activity of XO showed a significant increase (p<0.05) in up to 144 hours. The activities of CAT and SOD showed a significant decrease (p<0.05) in up to 96 hours, but they were not significantly different from the normal value at 144 hours. The GST activity was significantly decreased (p<0.01) in up to 96 hours, not so at 24 hours. However, that was not significantly different from the normal value at 144 hours. There was a significant decrease (p<0.01) in the contents of TBARS at 48 and 96 hours, without any significant difference at 144 hours. While the content of GSH was significantly lower (p<0.05) at 24 hours, that was not significantly different thereafter up to 144 hours from the normal value. Therefore, it is assumed that skin damage with a dose of $400mJ/cm^2$ UVB irradiation might be caused by the oxidative stress which was resulted from the unbalance of oxygen fret radical generating and scavenging enzymes.

Cellular Responses of Salmonella typhimurium Exposed to Green Tea Polyphenols (녹차폴리페놀에 노출된 Salmonella typhimurium의 세포반응)

  • Choi, Hyo-Kyung;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • The purpose of this study was to examine the cellular response of Salmonella typhimurium exposed to tea polyphenols (TPP) extracted from Korean green tea (Camellia sinensis L.). TPP showed a dose-dependent bactericidal effect on S. typhimurium. Analysis of cell membrane fatty acids of S. typhimurium cultures treated with TPP identified unique changes in saturated and unsaturated fatty acids, while scanning electron microscopic analysis demonstrated the presence of perforations and irregular rod forms with wrinkled surfaces in cells treated with TPP. Two-dimensional polyacrylamide gel electrophoresis of soluble protein fractions from S. typhimurium cultures showed 16 protein spots increased by TPP. These up-regulated proteins including proteins involved in antioxidants and chaperons, transcript and binding proteins, energy and DNA metabolism were identified by peptide mass fingerprinting using MALDI-TOF. These results provide clues for understanding the mechanism of TPP induced stress and cytotoxicity on S. typhimurium.

Clinical application of mandibular removable partial denture using implant-supported surveyed crown: A case report (임플란트 지지 서베이드 금관을 이용한 하악의 가철성 국소의치 수복 증례)

  • Park, Jae-Ho;Min, Byung-Kwee;Yang, Hong-So;Park, Chan;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • When making conventional removable partial denture for the remaining teeth where the remaining teeth are only on one side, rotation of the denture occurs -in function- on the axis of the connected remaining teeth. If the edentulous portion is long, it becomes harder to obtain retention and stability for the abutment as the importance of the mucous membrane support is elevated. Such movements of denture decrease denture retention and stability, put excessive stress on the abutment, and give bad influence on periodontal health. Therefore, additional implant placement can be of a good choice in gaining additional retention and stability for partial denture. Thus hereby we report this clinical case as successful results were obtained by placing implants symmetrical to the remaining teeth and putting implant-supported surveyed crowns on the implants, allowing the partial denture to be designed to accept varying components and to have suitable path of insertion.

Measurement of Mechanical Properties of Thin Films Using a Combination of the Bulge Test and Nanoindentation (벌지 실험과 나노 압입 실험을 통한 박막의 기계적 물성 측정)

  • Jung, Bong-Bu;Lee, Hun-Kee;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.117-123
    • /
    • 2012
  • This paper discusses two different techniques used to measure the mechanical properties of thin films: the bulge test and the nanoindentation test. In the bulge test, a uniform pressure is applied to one side of the film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as Young's modulus, and the residual stress. A nanoindentation test is performed by pushing an indenter tip into the specimen and then withdrawing it, and then recording the indentation force as a function of the indenter position. A modified King's model is used to estimate the mechanical properties of the thin film in order to avoid the effects of the substrate layers. A combination of both the bulge test and the nanoindentation test can determine both Young's modulus and Poisson's ratio simultaneously.

Alzheimer's Disease and Apoptosis

  • Kim, Young-Hoon;Kim, Hye-Sun;Park, Cheol-Hyoung;Jeong, Sung-Jin;Kim, Young-Kyung;Kim, Sun-Hee;Lee, Sang-Kyeng;Suh, Yoo-Hun;Kim, Sung Su
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • Apoptosis is a form of cell death in which the cells shrink and exhibit nuclear chromatin condensation and DNA fragmentation, and yet maintain membrane integrity. Many lines of evidence have shown that brain neurons are vulnerable to degeneration by apoptosis. Also it has been suggested that apoptosis is one of the mechanism contributing neuronal loss in Alzheimer's disease(AD), since the conditions in the disease($A{\beta}$ peptide, oxidative stress, low energy metabolism) are the inducers that activate apoptosis. Indeed some neurons in vulnerable regions of the AD brain show DNA damage, chromatin condensation, and apoptic bodies. Consistently, mutations in AD causative genes(Amyloid precursor protein, Presenilin-1 and Presenilin- 2) increase $A{\beta}$ $peptide_{1-42}(A{\beta}_{1-42})$ and sensitize neuronal cell to apoposis. However, several lines of evidence have shown that the location of neuronal loss and $A{\beta}$ peptide deposition is not correlated in AD brain and transgenic mice brain over-expressing $A{\beta}_{1-42}$. Taken together, these data may indicated that $A{\beta}$ peptide(and other causative factors of AD) can interact with other cellular insults or risk factors to exacerbate pathological mechansim of AD through apoptosis. Thus, this review discusses possible role and mechanism of apoptosis in AD.

  • PDF

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.