DOI QR코드

DOI QR Code

벌지 실험과 나노 압입 실험을 통한 박막의 기계적 물성 측정

Measurement of Mechanical Properties of Thin Films Using a Combination of the Bulge Test and Nanoindentation

  • 투고 : 2011.04.22
  • 심사 : 2011.11.15
  • 발행 : 2012.02.01

초록

본 연구에서는 벌지 실험과 나노 압입 실험을 통해 박막의 기계적 물성을 측정하였다. 벌지 실험은 외적 지지구조를 가지지 않는 박막 시편의 한 면에 일정한 압력을 가하여 박막의 변위를 측정, 압력과 변위의 관계를 이용하여 박막의 기계적 물성을 측정하는 실험이다. 나노 압입 실험은 시편에 압입 방향으로의 하중과 시편의 표면으로부터 압입자의 깊이에 대한 데이터를 통하여 시편의 기계적 물성을 측정하는 실험으로 modified King's model 을 이용하여 모재의 영향이 고려된 박막의 물성을 구할 수 있다. 두 실험은 탄성 계수와 푸아송비의 수학적 관계가 다르기 때문에 벌지 실험과 나노 압입 실험결과로부터 박막의 탄성계수와 푸아송비를 동시에 측정할 수 있다.

This paper discusses two different techniques used to measure the mechanical properties of thin films: the bulge test and the nanoindentation test. In the bulge test, a uniform pressure is applied to one side of the film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as Young's modulus, and the residual stress. A nanoindentation test is performed by pushing an indenter tip into the specimen and then withdrawing it, and then recording the indentation force as a function of the indenter position. A modified King's model is used to estimate the mechanical properties of the thin film in order to avoid the effects of the substrate layers. A combination of both the bulge test and the nanoindentation test can determine both Young's modulus and Poisson's ratio simultaneously.

키워드

참고문헌

  1. Ding, J. N. and Meng, Y.G., 2000, "Specimen Size Effect on Mechanical Properties of Polysilicon Microcantilever Beams Measured by Deflection Using a Nanoindenter ," Mater. Sci. Eng., B83, pp. 42-47.
  2. Jayaraman, S., R Edwards,.L. and Hemker, K.J., 1999, "Relating Mechanical Testing and Microstructural Features of Polysilicon Thin Films," Journal of Materials Research, Vol. 14, No. 3, PP. 688-697. https://doi.org/10.1557/JMR.1999.0094
  3. Cho, S.-J., Lee, K.-R., Eun, K. Y. and Ko, D.-H., 1999, "Determination of Elastic Modulus and Poisson's Ratio of Diamond-Like Carbon Films," Thin solid films, Vol. 341, pp.207-210. https://doi.org/10.1016/S0040-6090(98)01512-0
  4. Zhao, J.-H. Ryan, T. and Ho, P. S., 1999, "Measurement of Elastic Modulus, Poisson Ratio, and Coefficient of Thermal Expansion of on-Wafer Submicron Films," Journal of Applied Physics, Vol. 85, , pp.6421-6424. https://doi.org/10.1063/1.370146
  5. Bhushan, B., Mokashi, P. S. and Ma, T., 2003, "A Technique to Measure Poisson's Ratio of Ultrathin Polymeric Films Using Atomic Force Microscopy," Review of Scientific Instruments, Vol. 74, No. 2, pp. 1043-1047. https://doi.org/10.1063/1.1531827
  6. Luo, C., Schneider, T. W., White, R. C., Currie, J. and Paranjape, M., 2003, "A Simple Deflection-Testing Method to Determine Poisson's Ratio for MEMS Applications," Jourmal of Micromechanics and Microengineering, Vol. 13, pp. 129-133. https://doi.org/10.1088/0960-1317/13/1/318
  7. Kim, J.-H., Yeon, S.-C., Heon, Y.-K., Kim, J.-G. and Kim, Y.-H., 2003, "Nano-Indentation Method for the Measurement of the Poisson's Ratio of MEMS Thin Films," Sensor and Actuators A, Vol. 108, pp. 20-27. https://doi.org/10.1016/j.sna.2003.07.001
  8. Jung, B. B., Ko, S. H., Lee, H. K. and Park, H. C., 2008, "Measurement of Young's Modulus and Poisson's Ratio of Thin Film by Combination of Bulge Test and Nano-Indentation," Advanced Materials Research, Vol. 33-37, pp. 969-974. https://doi.org/10.4028/www.scientific.net/AMR.33-37.969
  9. Beams, J. W., 1959, in Structure and Properties of Thin Films of Gold and Silver, New York, John Wiley and Sons, p. 183.
  10. Martha, K. S. and Nix, W.D., 1992, "Analysis of the Accuracy of the Bulge Test in Determining the Mechanical Properties of Thin Films," Journal of Materials Research, Vol. 7, No. 6, pp. 1553-1563. https://doi.org/10.1557/JMR.1992.1553
  11. Kim, B.-M., Lee, C.-J. and Lee, J.-M., 2010, "Estimations of Work Hardening Exponents of Engineering Metals Using Residual Indentation Profiles of Nano-Indentation," Journal of Mechanical Science and Technology, Vol. 24, No. 1, pp. 73-76. https://doi.org/10.1007/s12206-009-1115-8
  12. Rathinam, M., Thillaigovindan, R. and Paramasivam, P., 2009, "Nanoindentation of Aluminum (100) at Various Temperatures," Journal of Mechanical Science and Technology, Vol. 23, No. 10, pp. 2652-2657. https://doi.org/10.1007/s12206-009-0718-4
  13. Kim, A. and Tunvir, K., 2006, "Study of Al-Alloy Foam Compressive Behavior Based on Instrumented Sharp Indentation Technology," Journal of Mechanical Science and Technology, Vol. 20, No. 6, pp. 819-827. https://doi.org/10.1007/BF02915945
  14. Sneddon, I. N., 1965, "The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile," International Journal of Engineering and Science, Vol. 3, pp. 47-57. https://doi.org/10.1016/0020-7225(65)90019-4
  15. Pharr, G. M., Oliver, W. C. and Brotzen, F. R., 1992, "On the Generality of the Relationship Among Contact Stiffness Contact Area, and Elastic Modulus During Indentation," Journal of Materials Research, Vol. 7, No. 3, pp. 613-617. https://doi.org/10.1557/JMR.1992.0613
  16. King, R. B., 1987, "Elastic Analysis of Some Punch Problems for a Layered Medium," International Journal of Solids structures, Vol. 23, No. 12, pp. 1657-1664 https://doi.org/10.1016/0020-7683(87)90116-8
  17. Saha, R. and Nix, W. D., 2002, "Effect of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation," Acta Materialia, Vol. 50, pp. 23-38. https://doi.org/10.1016/S1359-6454(01)00328-7
  18. Oliver, W. C. and Pharr, G. M., 1992, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  19. Cao, Y., Allameh, S., Nankivil, D., Sethiaraj, S., Otiti, T. and Soboyejo, W., 2006, "Nanoindentation Measurements of the Mechanical Properties of Polycrystalline Au and Ag Thin Films on Silicon Substrates: Effects of Grain Size and Film Thickness," Materials Science and Engineering A, Vol. 427, pp. 232-240. https://doi.org/10.1016/j.msea.2006.04.080
  20. Laursen, T. A. and Simo, J. C., 1992, "A Study of the Mechanics of Microindentation Using Finite Elements ," Journal of Materials Research, Vol. 7, No. 3, pp. 618-626. https://doi.org/10.1557/JMR.1992.0618
  21. Catlin, A. and Walker, W. P., 1960, "Mechanical Properties of Thin Single-Crystal Gold Films," Journal of Applied Physics, Vol. 31, No. 12, pp. 2135-2139. https://doi.org/10.1063/1.1735513
  22. Xiang, Y., Chen, X. and Vlassak, J. J., 2005, "Plane-Strain Bulge Test for Thin Films," Journal of Applied Physics, Vol. 31, No. 12, pp. 2135-2139. https://doi.org/10.1063/1.1735513
  23. Son, D., Jeong, J.-h. and Kwon, D., 2003, "Film-Thickness Considerations in Microcantilever-Beam Test in Measuring Mechanical Properties of Metal Thin Film," Thin solid films, Vol. 437, pp. 182-187. https://doi.org/10.1016/S0040-6090(03)00645-X