• Title/Summary/Keyword: Membrane Pumping

Search Result 46, Processing Time 0.028 seconds

A thermopneumatic-actuated polydimethylsiloxane microfluidic system integrated with micropump and microvalve on the same structure (동일 구조의 마이크로 펌프와 밸브가 직접된 열공압 방식의 PDMS 미세 유체 시스템)

  • Moon, Min-Chul;Yoo, Jong-Chul;Kang, C.J.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.116-118
    • /
    • 2005
  • 열공압 방식으로 동작하는 마이크로 펌프와 밸브가 집적된 (polydimethylsiloxane)PDMS 미 세 유체 시스템을 제작하였다. 본 실험에서 제안한 미세 유체 시스템은 PDMS 마이크로 채널, PDMS membrane, 열공압 챔버, indium tin oxide(ITO) 히터로 구성되어 있다. 마이크로 펌프의 경우 가해주는 펄스 전압의 변화를 통해 유속을 최적화 하였고 마이크로 밸브의 경우 가해주는 직류 전압을 변화시켜 유체의 흐름을 제어할 수 있었다. 미세 유체 시스템의 최적화된 조건은 마이크로 펌프의 경우 duty 4%와 주파수 4Hz에서 최대 pumping rate을 나타냈고 그때의 pumping rate 68nl/min이었다. 마이크로 밸브의 유체를 closing 전력은 450mW이었다.

  • PDF

Effect of Inlet and Outlet Position on the Pumping Characteristics of a Diffuser/Nozzle Based Piezoelectric Micropumps (디퓨저/노즐을 이용한 압전형 마이크로 펌프의 펌핑 특성에 미치는 입출구 위치의 영향)

  • Jang, Hun-Hee;Kim, Chang-Nyung;Jung, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.411-417
    • /
    • 2007
  • This study has been conducted to investigate pumping characteristics of diffuser/nozzle based piezoelectric micropumps. The micropumps include a piezo disk (an actuator), a chamber and a set of diffuser and nozzle. Flow in the current micropumps is controlled by a set of diffuser and nozzle, not by a nap valve. The diffuser/nozzle based micropumps are more reliable in operation and are easier in manufacturing than the flap valve based micropumps. The flow rates of the piezoelectric micropumps have been closely analyzed with a numerical calculation. It has been found that the positions of the inlet and outlet of the micropump can influence the performance of the diffuser/nozzle based piezoelectric micropumps. This study may provide fundamental understanding for the design and analysis of the piezoelectric micropumps.

BIOCHEMICAL MODEL AND MECHANISM FOR ACINETOBACTER NITRITE INHIBITION

  • Lee, Chan-Won;Weon, Seung-Yeon
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 2005
  • Nitrite accumulation is not unusual in batch processes such as sequencing batch reactor (SBR) with high-strength of ammonium or nitrate wastewaters. A possible mechanism of nitrite inhibition on Acinetobacter was depicted in a biochemical model, which the protonated species, nitrous acid form of nitrite, affects proton relating transport at the proton-pumping site crossing the cell membrane under unlimited carbon and phosphorus conditions. This effect exerts inhibition of phosphorylation under aerobic condition and yields low APT/ADP ratio, consequently decrease poly-P synthesis and phosphorus uptake from outside the cell in the model.

The Characteristics of Seawater RO Membrane for High Recovery System (해수담수화용 역삼투막의 고회수율 공정에서의 투과 특성)

  • 김노원
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.182-191
    • /
    • 2002
  • Polyamide reverse osmosis (RO) membrane with thin film composite structure was commercialized for seawater desalination process. Recently, it has been reported that some RO processes for high pressure and recovery leads to reducing in energy cost and pretreatment scale compared with earlier process. The development of energy recovery, pumping device and RO elements with high pressure and rejection made high pressure and recovery process possible. In this study, permeation properties of commercialized seawater RO membrane were investigated under the condition of high pressure and recovery. In the RO sheet membrane test 3.5% NaCl of synthetic seawater was used. The synthetic seawater contained only sodium chloride. In the RO module test, natural seawater was used at Happo Bay, Masan city. As the results, RO membrane with high durability of pressure was better than that with high rejection of seawater for high pressure and recovery process. Seawater rejection of high concentrate tends to be improved by high pressure operation.

Hemodynamic Modeling of the Pulsatile Cardiac Pulmonary Perfusion for the Patient's Heart (환자의 박동형 심장의 폐순환 혈류 모델링에 대한 연구)

  • Kim, J.S.;Kim, M.S.;Choi, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1679-1682
    • /
    • 2008
  • Pulsatile Extracorporeal Membrane Oxygenation(ECMO) can mitigate the heart load and raise the patient's blood perfusion. But If the ECMO pulsate the blood flow during the systolic period, It can burden to the patient's heart. To avoid the heart injury, we have to consider the relation between output of ECMO, hemodynamic states and heart movement. To raise the efficacy of the pulsatile ECMO, we investigated the coronary perfusion, cardiac muscle tension and hemodynamic states during the ECMO perfusion by using the mathematical model of human blood circulatory system and ECMO. The outflow data of the pulsatile ECMO(T-PLS, Bioheartkorea, Korea) was obtained in vitro experiments. According to the phase and pumping rate of the ECMO, the heart's load and coronary perfusion could be adjusted to the proper levels. The results of the human- ECMO lumped parameter model showed that the synchronizing operation of the pulsatile ECLS can be helpful at stabilizing the patient's hemodynamic states.

  • PDF

The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst (PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교)

  • GISEONG LEE;HYEON SEUNG JUNG;JINHO HYUN;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.178-186
    • /
    • 2023
  • Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

Stress-induced Cardiomyopathy during Pulmonary Resection (Takotsubo Syndrome) - A case report -

  • Lee, Seok-Kee;Lim, Seung-Pyung;Yu, Jae-Hyeon;Na, Myung-Hoon;Kang, Shin-Kwang;Kang, Min-Woong;Oh, Hyun-Kong
    • Journal of Chest Surgery
    • /
    • v.44 no.4
    • /
    • pp.294-297
    • /
    • 2011
  • Stress-induced cardiomyopathy is caused by emotional or physical stressors and mimics acute myocardial infarction, though Stress-induced cardiomyopathy is characterized by reversible left ventricular (LV) apical ballooning in the absence of significant coronary artery disease. We describe a 51-year-old male who underwent left upper lobectomy for non-small cell lung cancer, and during which cardiogenic arrest occurred due to stress-induced cardiomyopathy, successfully managed by intra-aortic balloon pumping and extracorporeal membrane oxygenation.