• Title/Summary/Keyword: Membrane Permeability

Search Result 933, Processing Time 0.022 seconds

Preparation and Gas Permeation Properties of PDMS-HNT Nanotube Composite Membrane (PDMS-HNT 나노튜브 복합막의 제조와 기체투과 성질)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.185-193
    • /
    • 2014
  • PDMS (polydimethylsiloxane)-HNT (halloysite nanotube) composite membranes were prepared with different amounts tendency of HNT 5, 10, 20 and 30 wt% and rubbery polymer PDMS. The characteristics of these membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $25^{\circ}C$ and $3kg/cm^2$. Gas permeability of $N_2$, $H_2$, $CH_4$, and $CO_2$ and selectivity were investigated by increasing the amount of HNT contents in the PDMS. In $H_2$, $N_2$, $CH_4$, and $CO_2$ gases, as increasing HNT contents from 0 to 30 wt%, decreasing value of the permeability were observed. The selectivity of ($CO_2/N_2$) was shown in the range of 14 to 44 and the range of selectivity of ($CO_2/CH_4$) was 3.0 to 7.0.

Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 Poly(arylene ether sulfone) 막의 특성)

  • Oh, Sung-June;Jeong, Jae-Hyeon;Shin, Yong-Cheol;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Kim, Young-Sook;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.671-676
    • /
    • 2013
  • Recently, there are many efforts focused on development of Redox Flow Battery (RFB) for large energy storage system. Economical hydrocarbon membranes alternative to fluorinated membranes for RFB membrane are receiving attention. In this study, characteristics of poly(arylene ether sulfone) (PAES) were compared with expensive fluorinated membrane at VRB (Vanadium Redox Flow Battery) operation condition. Permeability of vanadium ion through membrane, ion exchange capacity (IEC), change of OCV, swelling, charge-discharge curves and energy efficiency were measured. PAES membrane showed lower permeability of vanadium ion, higher IEC and then higher energy efficiency compared with Nafion 117 membranes.

Development of Luteinizing Hormone Releasing Hormone (LHRH) Delivery Systems for Vaginal Mucosal Route

  • Han, Kun;Park, Jeong-Sook;Youn, Bok-Chung;Nam, Joo-Jeong;Park, Hee-Beom;Joseph-R. Robinson
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.325-331
    • /
    • 1995
  • The objective of this study was to find a rational dosage form for vaginal mucosal delivery of LHRH. Vaginal absorption of LHRH was estimated by measuring its ovulation inducting effect in rat and in vitro vaginal membrane permeation study in rabbit. THe effects of different hydrogel bases, such as Polycarbophil and Pemulen compared with solutions on vaginal membrane permeation of LHRH were investigated. Sodium laurate, disodium ethylenediamine brane permeaiton of LHRH were investigated. Sodium ethylenediamine tetraacetate (EDTA) and sodium tauro-24, 25-dihydrofusidate (STDHF), which are effective peptidase inhibitors were chosen as additives to a LHRH hydrogel delivery system and LHRH solutions. A Polycarbophil compared with a solution formulation 3.4 times increase in LHRH vaginal membrane permeability compared with a solution formulation. Vaginal membrane permeability from the Polycarbophil was greater than that from Pemulen hydrogels. This may be due to the larger bioadhesive values. LHRH solution with EDTA(2%), STDHF(1%) and sodlaurate(0.5%) showed 4.1 times, 4.8 times and 6.0 times of ovulation inducing activity compared with control. These results suggest that enzyme inhibition effect of EDTA, STDHF and sod, laurate may be result in substantial enhancement of vaginal absorption. By administraiton of Polycarbophil hydrogels containing LHRH the ovulation inducing activity was 3.3 times greater than the solutions. This result indicates the bioadhesive hydrogels as well as peptidase in hibition significantly improved absorption of LHRH. By coadministration with these inhibitors the ovulation inducing activity of Polycarbophi hydrogel containing LHRH was comparable with subcutaneous administration in ovulation inducing activity.

  • PDF

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Preparation of Polymer-Metal Complexed Membranes using Ethylcellulose and Metal salts, and Their Characteristics of Gas Separation. (Ethylcellulose와 금속염을 이용한 고분자-금속 착체막의 제조 및 기체투과특성)

  • 변홍식;서성호;박병규;홍병표;백승욱;박영규
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.200-209
    • /
    • 2003
  • Polymer-metal complexed membranes were prepared by solvent evaporation method using ethylcellulose, platinum(II)acetylacetonate, and rhodium(III)acetylacetonate. The various composition of metal salt(0.3-4.0 wt%) were employed to obtain the optimum performance of final membrane. EC-metal complexed membranes were characterized by FTIR and scanning electron microscopy(SEM) to observe the morphology and the performance of oxygen, nitrogen, carbon dioxide, and methane gases was tested. It was shown that the metal salts enhanced the permeability of all gases without decrease of selectivity. However, it was found that Pt had more effects on the permeability of oxygen and nitrogen gases while Rh had more effects on the permeability of carbon dioxide and methane gases. EC-Pt complexed membrane(Pt 1.0 wt%) even showed the enhanced selectivity of oxygen/nitrogen(37%) due to the affinity characteristic of Pt to oxygen.

Effect of Concentration of Solution and Temperature on Water Flux by Semi-Permeability of Hardened Cement Paste (시멘트경화체의 반투과성에 의한 수분이동에 미치는 용액농도와 환경온도의 영향)

  • 배기선;오상근;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.131-136
    • /
    • 1997
  • It is well known that concrete is typical porous material. We pay attention to Hansen's idea that concrete may be expected to act as semi-permeable membrane, and report the effect of concentration of solution and temperature on water flux in forward osmosis. In order to measuring volume of water flux from distilled water to solution of sodium chloride through hardened cement paste, specially designed apparatus was constructed, and the following result were obtained: (1) hardened cement paste acts as semi-permeable membrane, consequently, water flux in forward osmosis may occur. (2) Rate of water flux is proportion to concentration of dilute solution, and this suggests hardened cement paste is agreeable to the theory of membrane. (3) Effect of temperature on water flux is agreeable to Arrehenius equation and is great.

  • PDF

Properties of Antimicrobial Membrane Using an N-Halamine Material (N-Halamine을 이용한 항균 멤브레인의 특성)

  • Baek, Ji-Yoon;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2009
  • N-Halamines are compounds which have covalent bonding between nitrogen and halogen. N-Halamine materials possess strong antimicrobial properties against wide spectrum of bacteria. The aim of this study is to prepare N-halamine membranes using m-aramid and poly(vinyl alcohol) (PVA). Surface characteristics using scanning electron microscope (SEM), pore size distribution, liquid permeability and mean pore size were measured to confirm feasibility as membrane. The results indicated that increased PYA portion up to 15% in the m-aramid/PVA blend resulted in improved pore size distribution, liquid permeability as well as mean pore size. Furthermore, antibacterial efficacy of the membranes after chlorination was confirmed and the results showed that bacteria in water were inactivated.

Insights into the significance of membrane structure and concentration polarization on the performance of gas separation membrane permeators: Mathematical modeling approach

  • Dehkordi, Javad Aminian;Hosseini, Seyed Saeid;Kundu, Prodip K.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.333-346
    • /
    • 2018
  • This study presents a mathematical modeling approach for developing models based on non-ideal conditions related to the membrane structure including porous supporting layer and deformation under pressure. Comparison of the findings with experimental data reveal the importance of considering the resistance in porous supporting layer though the effect of concentration polarization in the permeate stream could be neglected. Investigations on deformation of fibers under pressure ascertain that at larger fiber inner radius to outer radius ratios, increasing driving force may lead to an initial increase in permeability. After that, the effects of deformation dominates and thus permeability may be decreased.

Facilitated Transport: Basic Concepts and Applications to Gas Separation Membranes (촉진수송: 기본 개념 및 기체분리막 응용)

  • Park, Cheol Hun;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.205-215
    • /
    • 2017
  • Polymer membranes are cheap and easy in fabrication, and show a high permeability and selectivity, thus play pivotal roles in gas separation as well as water purification. However, polymer membranes typically exhibit the trade-off relation between permeability and selectivity; i.e. when the permeability is high, the selectivity is low and vice versa. Facilitated transport has been considered one of the solutions to address this issue. Over the last decades, facilitated transport concept had played an important role in preparing the membranes and providing ideal and various models for the transport. Understanding the nature of carrier, the mobility of matrix and the physico-chemical properties of polymer composites are crucial for facilitated transport. Depending on the mobility of carrier, facilitated transport membrane is classified into three; mobile carrier membrane, semi-mobile carrier membrane, fixed-site carrier membrane. Also, there are four types of reversible reaction between the carrier and the specific target; proton transfer reaction, nucleophilic addition reaction, p-complexation reaction and electrochemical reaction. The facilitated transport membranes have been applied in the separation of CO2, O2 and olefin (propylene or ethylene). In this review, major challenges surrounding facilitated transport membranes and the strategies to tackle these challenges are given in detail.

Gas Permeation Characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 Composite Membranes (PEBAX/ZIF-8과 PEBAX/amineZIF-8 복합막을 통한 CO2와 N2의 기체투과 특성)

  • Hong, Se Ryeong;O, So Young;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2020
  • In this study, PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes were prepared according to the content of zeolitic imidazolate framework-8 (ZIF-8), amine-modified ZIF-8 (amineZIF-8), the gas permeability properties of N2 and CO2 were investigated for each composite membrane. In the case of the PEBAX/ZIF-8 composite membrane, the permeability of N2 and CO2 increased as the ZIF-8 content increased, and in the case of the PEBAX/amineZIF-8 composite membrane, the permeability of N2 and CO2 increased up to 20 wt% of amineZIF-8, but decreased at the higher content. CO2/N2 ideal selectivity increased up to 20 wt% of ZIF-8 and amineZIF-8 contents in both PEBAX/ZIF-8 and PEBAX/ amineZIF-8 composite membranes, and then decreased thereafter, in the case of PEBAX/amineZIF-8 composite membrane was less decreased. The reason for the highest CO2/N2 ideal selectivity at 20 wt% of amineZIF-8 is that amine modification improved the compatibility between PEBAX and amineZIF-8, and thus amineZIF-8 was evenly dispersed in PEBAX, resulting in the greatest effect of the porous ZIF-8 with a 3.4 Å pore size and the amine with affinity for CO2.