Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205

Facilitated Transport: Basic Concepts and Applications to Gas Separation Membranes  

Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.27, no.3, 2017 , pp. 205-215 More about this Journal
Abstract
Polymer membranes are cheap and easy in fabrication, and show a high permeability and selectivity, thus play pivotal roles in gas separation as well as water purification. However, polymer membranes typically exhibit the trade-off relation between permeability and selectivity; i.e. when the permeability is high, the selectivity is low and vice versa. Facilitated transport has been considered one of the solutions to address this issue. Over the last decades, facilitated transport concept had played an important role in preparing the membranes and providing ideal and various models for the transport. Understanding the nature of carrier, the mobility of matrix and the physico-chemical properties of polymer composites are crucial for facilitated transport. Depending on the mobility of carrier, facilitated transport membrane is classified into three; mobile carrier membrane, semi-mobile carrier membrane, fixed-site carrier membrane. Also, there are four types of reversible reaction between the carrier and the specific target; proton transfer reaction, nucleophilic addition reaction, p-complexation reaction and electrochemical reaction. The facilitated transport membranes have been applied in the separation of CO2, O2 and olefin (propylene or ethylene). In this review, major challenges surrounding facilitated transport membranes and the strategies to tackle these challenges are given in detail.
Keywords
facilitated transport membranes; carrier; permeability; selectivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. H. Lee, J. Hong, J. H. Kim, Y. S. Kang, and S. W. Kang, "Facilitated $CO_2$ transport membranes utilizing positively polarized copper nanoparticles", Chem. Commun., 48, 5298 (2012).   DOI
2 S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, "Amino acid ionic liquid-based facilitated transport membranes for $CO_2$ separation", Chem. Commun., 48, 6903 (2012).   DOI
3 S. Kasahara, E. Kamio, A. Yoshizumi, and H. Matsuyama, "Polymeric ion-gels containing an amino acid ionic liquid for facilitated $CO_2$ transport media", Chem. Commun., 50, 2996 (2014).   DOI
4 M. Poloncarzova, J. Vejrazka, V. Vesely, and P. Izak, "Effective purification of biogas by a condensing- liquid membrane", Angew. Chem., Int. Ed., 50, 669 (2011).   DOI
5 L. Zhang, N. Xu, X. Li, S. Wang, K. Huang, W. H. Harris, and W. K. S. Chiu, "High $CO_2$ permeation flux enabled by highly interconnected three-dimensional ionic channels in selective $CO_2$ separation membranes", Energy Environ. Sci., 5, 8310 (2012).   DOI
6 T. C. Merkel, R. Blanc, I. Ciobanu, B. Firat, A. Suwarlim, and J. Zeid, "Silver salt facilitated transport membranes for olefin/paraffin separations: Carrier instability and a novel regeneration method", J. Membr. Sci., 447, 177 (2013).   DOI
7 S. W. Kang, J. H. Kim, J. Won, and Y. S. Kang, "Suppression of silver ion reduction by $Al(NO_{3})_{3}$ complex and its application to highly stabilized olefin transport membranes", J. Membr. Sci., 445, 156 (2013).   DOI
8 N. Chikushi, E. Ohara, A. Hisama, and H. Nishide, "Porphyrin network polymers prepared via a click reaction and facilitated oxygen permeation through their membranes", Macromol. Rapid Commun., 35, 976 (2014).   DOI
9 F. Pitsch, F. F. Krull, F. Agel, P. Schulz, P. Wasserscheid, T. Melin, and M. Wessling, "An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations", Adv. Mater., 24, 4306 (2012).   DOI
10 Y. Li, S. Wang, G. He, H. Wu, F. Pan, and Z. Jiang, "Facilitated transport of small molecules and ions for energy-efficient membranes". Chem. Soc. Rev., 44, 103 (2015).   DOI
11 E. L. Cussler, R. Aris, and A. Bhown, "On the limits of facilitated diffusion", J. Membr. Sci., 43, 149 (1989).   DOI
12 M. Almeida, R. W. Cattrall, and S. D. Kolev, "Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs)", J. Membr. Sci., 415, 9 (2012).
13 K. Ramasubramanian, Y. Zhao, and W. S. Winston Ho, " $CO_2$ capture and $H_2$ purification: Prospects for $CO_2$-selective membrane processes", AIChE J., 59, 1033 (2013).   DOI
14 J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015).   DOI
15 W. S. Chi, J. H. Lee, M. S. Park and J. H. Kim, "Recent Research Trends of Mixed Matrix Membranes for $CO_2$ Separation", Membr. J., 25, 373 (2015).   DOI
16 Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu and Z. Jiang, "Recent advances in the fabrication of advanced composite membranes", J. Mater. Chem. A, 1, 10058 (2013).   DOI
17 J. Sunarso, S. Liu, Y. S. Lin, and J. C. D. da Costa, "High performance BaBiScCo hollow fibre membranes for oxygen transport", Energy Environ. Sci., 4, 2516 (2011).   DOI
18 J. H. Oh, Y. S. Kang, and S. W. Kang, "Poly(vinylpyrrolidone)/ KF electrolyte membranes for facilitated $CO_2$ transport", Chem. Commun., 49, 10181 (2013).   DOI
19 Y. I. Park, H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, U. H. Lee, and Y. I. Park, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23, 432 (2013).   DOI
20 Y. S. Kang, J. H. Kim, J. Won, and H. S. Kim, "Materials Science of Membranes for Gas and Vapor Separation", Eds. Y. Yampolskii, I. Pinnau and B. Freeman, pp. 391-410, John Wiley & Sons, Chichester, CHICH (2006).
21 S. Li, Z. Wang, X. Yu, J. Wang, and S. Wang, "High‐performance membranes with multi-permselectivity for $CO_2$ separation", Adv. Mater., 24, 3196 (2012).   DOI
22 Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-Benzoquinone and its implications for facilitated olefin transport", Adv. Mater., 19, 475 (2007).   DOI
23 S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008).   DOI
24 I. S. Chae, S. W. Kang, J. Y. Park, Y.-G. Lee, J. H. Lee, J. Won, and Y. S. Kang, "Surface energy- level tuning of silver nanoparticles for facilitated olefin transport", Angew. Chem., Int. Ed., 50, 2982 (2011).   DOI
25 F. Y. Li, Y. Li, T. S. Chung, and S. Kawi, "Facilitated transport by hybrid POSS-Matrimid- $Zn^{2+}$ nanocomposite membranes for the separation of natural gas", J. Membr. Sci., 356, 14 (2010).   DOI