• Title/Summary/Keyword: Membrane Flux

Search Result 1,023, Processing Time 0.029 seconds

Numerical Analysis of Concentration Polarization for Spacer Configuration in Plate Type Membrane Module (평판형 분리막 모듈 내 스페이서 형태에 따른 농도분극에 관한 수치해석)

  • Shin, Ho Chul;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • As the spacer in the membrane module provide the channel space to flow the feed solution smoothly and induce the flow turbulence, it could help to reduce both the concentration polarization and to take the long-term operation of membrane modules with high permeate flux by mixing the accumulated contaminants on the membrane surface into the bulk solution. In this study, the concentration distribution in membrane module with respect to the spacers which have the cross-sectional shapes of circle, cross, diamond and hexagon, the angles of spacer configuration, solute rejection and permeate flux were interpreted and optimized numerically using the "COMSOL Multiphysics" software. The concentration on the membrane surface was kept the lowest level for the cross-shape among the above four types of spacers. Also the 30 degree spacer configuration was showed as the most efficient case. The concentrations on the membrane surface at the module outlet for without spacer and the cross shape with the 30 degree spacer configuration were 2.09 and 1.29 times higher than those at inlet, respectively. The reduction effect of concentration polarization increased rapidly as the permeate flux increased.

Water Treatment Application of a Large Pore Micro-Filtration Membrane and Its Problems (대기공 정밀여과막의 수처리 응용 및 문제점)

  • Yun, Chang-Han;Kim, Jeong-Hak;Lee, Kang Won;Park, Sung Ho
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.194-200
    • /
    • 2014
  • The purpose of this study was to evaluate the performance of newly developed Large Pore Micro-Filtration (LPMF) membrane in Lab size for the application of water treatment, and to find its problems with solutions. The out-to-inside filtration hollow fiber LPMF membrane of which average pore size was $5{\mu}m$ was used at this study and its material was the PET braid reinforced PVDF. Filtration tests were done through gravity with 30 cm water head difference or pressure below 1.5 bar, and the backwash was done instantaneously with the filtrate after pressurizing it to about 4 bar. The water flux of the LPMF membrane with 0.2 bar TMP (Trans Membrane Pressure) was 2 times higher than $0.4{\mu}m$ MF membrane with $0.05{\mu}m$ UF filtrate of the tap water and it was measured also with 20~30 cm water head difference which showed over 800 LMH at 30 cm water head difference. And Time-To-Filter (TTF) was performed by using $5{\mu}m$ filter paper to optimize coagulants and dosage which enhanced filtrate's turbidity and stabilized filtration flux. When the LPMF was operated with 30 cm gravity with very high dose of inorganic coagulants, the flux was maintained over 80 LMH with 93.5~99.5% turbidity removal. Especially, the filtration was maintained stably in the flux and about 97% of the recovery rate by instantaneous pressurized backwash with about 4 bar of the filtrate when the packing density was about 19%. But there was instability in filtration, since the TMP was continuously going up by inefficient backwash when the packing density was 43%.

Influence of Ion Exchange Capacity on the Performance of Ultrafiltration Membrane Prepared from Anion Charged Poly(bis[4-(3-aminophenoxy)phenyl]sulfone pyromellite)imide Derivatives (음이온성 Poly(bis[4-(3-aminophenoxy)phenyl]sulfone pyromellite)Imide Derivatives 한외여과막의 투과특성)

  • Jong-Young Jeon
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.26-36
    • /
    • 2004
  • Ultrafiltration membranes based on anion charged poly(bis[4-(3-aminophenoxy)phenyl]sulfone pyromellite) imide derivatives (ACPI) were prepared by the phase inversion method. The polymers have good solubility in aprotic polar solvents. The composition of casting solution and the casting conditions played an important role in determining the permeation characteristics of membrane because the membrane structure could be controlled by the preparation conditions. The extent of fouling-repression was observed by the relative ratio of permeate flux ($J_t$)/pure water flux ($J_0$) and the membrane filtration index (MFI). The characteristics were measured by aqueous solution of bovine serum albumin (BSA) over a pH range of 2.5-9.0. The ACPI membrane having a hydrophilic property was less fouled than the membrane prepared from the original polyimide. With increasing the ion exchange capacity of ACPI membrane, th $\varepsilon$ relative ratio of flux was higher while the membrane filtration index was lower as compared with the original polyimide membrane. From the further away from isoelectric point of bovin serum albumin, the permeation was higher as well as the formation of fouling was more diminish. ACPI membranes having various their properties could be obtained. Further, it was proved that their permeation properties could be determined from the preparation conditions, various operating conditions, and dim $\varepsilon$ rent ion exchange capacity of anion charged polyimide derivatives.

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

Permeation Flux of Ester Compounds through Hydrophobic Membrane by Pervaporation (투과증발에 의한 Ester 성분의 소수성막의 투과플럭스)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.197-204
    • /
    • 2016
  • The objective of this work was to investigate the performance of pervaporation process for recovery of ester compounds from model aqueous solutions and how the fluxes of esters and water were affected by changes in feed concentration and temperature. The flux of ethyl acetate (EA), propyl acetate (PA), ethyl propionate (EP), butyl acetate (BA), and ethyl butyrate (EB) increased with an increase in feed concentration from 0.15 wt% to 0.60 wt%, and increased with temperature change from $30^{\circ}C$ to $50^{\circ}C$. The flux of esters (EA, PA, EP, BA, and EB) was in order of (EA) < (PA, EP) < (BA, EB). This result meant that the flux strongly depended on affinity between esters and membrane surface; EA is the least hydrophobic because it has one hydrophobic function group ($-CH_2-$), (PA, EP) have two ($-CH_2-$), and (BA, EB) are the most hydrophobic because these have three ($-CH_2-$). As well as such an influence of hydrophobicity of ester molecules on ester flux, the influence of hydrophobicity of membrane surface on ester flux needs further investigation. With increase in temperature, water flux of aqueous EA, PA, EP, BA, and EB solution increased. However, water flux of aqueous ester solutions did not change appreciably with increase in concentration. This experimental results may be used as fundamental data for pervaporation (PV) to improve the aroma recovery process as an alternative to thermal evaporation and distillation processes.

Non-equilibrium Monte Carlo Simulations for Critical Flux of Hard Sphere Suspensions in Crossflow Filtration

  • Kim, Albert S.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.33-47
    • /
    • 2008
  • Non-equilibrium (irreversible) themodynamics is used to investigate colloidal back-diffusion during crossflow membrane filtration. The chemical potential is generalized as a superposition of equilibrium and irreversible contributions, originating from Brownian and shear-induced diffusion, respectively. As a result, an effective drag force is derived using the irreversible thermodynamics for a particle undergoing both Brownian and shear-induced diffusion in a sheared concentrated suspension. Using the drag force, a hydrodynamic force bias Monte Carlo method is developed for crossflow membrane filtration to determine the critical flux of hard sphere suspensions. Effects of shear rate and particle size on the critical flux are studied, and results show a good agreement with experimental observations reported in the literature.

  • PDF

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

  • Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.863-869
    • /
    • 2006
  • The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.

Evaluation of the Flux According to Membrane Distillation Module Structure and Operating Conditions Using PVDF Hollow Fiber Membrane (PVDF 중공사 분리막을 이용한 MD 모듈 구조 및 운전 조건에 따른 플럭스 영향 평가)

  • Min, Ji Hee;Lee, Seul ki;Gil, Nam Seok;Park, Min Soo;Kim, Jin Ho
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • Hydrophobic porous PVDF hollow fiber membranes for Membrane Distillation (MD) were fabricated by a combination of thermally induced phase separation (TIPS) and stretching. The purpose of this study is to investigate the shape and operating conditions of the module and the effect of piping size on parallel connection. In the optimization experiment of the vacuum membrane distillation module, the flux decreased as the packing density and length of the membrane in the module increased. When the module was connected vertically, it was confirmed that the nearest to the inlet of the vacuum port was the highest flux. In selecting the size of the header pipe of the module, it was confirmed that the maximum flux is shown when the inner diameter area of the hollow fiber membrane and the inner diameter area of the header pipe are the same. Also, it is necessary to find the optimal linear velocity because the higher the linear velocity in the module, the higher the flux, but the pressure acting on the module also increases proportionally.

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.