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Non-equilibrium Monte Carlo Simulations
for Critical Flux of Hard Sphere
Suspensions in Crossflow Filtration
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Abstract

Non-equilibrium (irreversible) themodynamics is used to in-
vestigate colloidal back-diffusion during crossflow membrane fil-
tration. The chemical potential is generalized as a superposi-
tion of equilibrium and irreversible contributions, originating
from Brownian and shear-induced diffusion, respectively. As a
result, an effective drag force is derived using the irreversible
thermodynamics for a particle undergoing both Brownian and
shear-induced diffusion in a sheared concentrated suspension.
Using the drag force, a hydrodynamic force bias Monte Carlo
method is developed for crossflow membrane filtration to de-
termine the critical flux of hard sphere suspensions. Effects of
shear rate and particle size on the critical flux are studied, and
results show a good agreement with experimental observations
reported in the literature.
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1 Introduction

In crossflow filtration using microfiltration (MF) and ultrafiltration
(UF) to remove particulate materials, colloidal back-diffusion plays
an important role in mitigating membrane fouling in terms of particle
deposition and cake formation [1, 2]. When MF and UF membranes
filter particles raging in size from 10 nm to 10 um, the particle diffusion
is controlled by two distinct, major factors: thermodynamic entropy
and hydrodynamic stress for smaller and larger particles, respectively.
Experimental observation of critical fluxes indicates that the border-
line between small and large particles is on the order of 0.1 — 1.0 um.
While the significance of each diffusion mechanism was individually
studied [4, 5], Sethi and Wiesner proposed the additivity of Brownian
and shear-induced diffusivities and modeled the transient behavior of
flux decline [6]. For large rigid particles, the lateral migration induced
by the inertial lift (i.e., tubular pinch effect) can play an important
role in particle transport during crossflow filtration [7, 8]. However,
the validity of the inertial lift is limited to neutrally buoyant parti-
cles, and therefore was not researched in conjunction with diffusive
transport mechanisms.

After being first noted as the “threshold flux” by Cohen and Prob-
stein [9], the concept of critical flux, defined as “a flux below which a
decline of flux with time does not occur; above it fouling is observed”
was proposed by Field et al. [10]. Subsequently, the critical flux con-
cept was widely adopted in membrane research and development com-
munities. In general the critical flux is dichotomized into two forms:
strong and weak. The strong form indicates the first flux for which
irreversible fouling appears on the membrane surface, and/or the flux
at which the transmembrane pressure starts deviating from the pure
water line of Darcy’s law. The weak form assumes rapid initial fouling,
which brings forth the flux versus transmembrane pressure (TMP) re-
lationship located below the pure water line with a lesser inclination.



A rigorous analysis of the critical flux concept can be found in Bacchin
et al.’s recent review [3].

Brownian diffusion dominates over shear-induced diffusion when
particles are below submicron-sized and/or strongly repulsive so that
the average inter-particle distance between nearest neighbors is much
greater than an order of particle diameter. The absolute shear rate
(rather than the crossflow Reynolds number [9]) is an important pri-
mary factor that can efficiently control fouling behavior, and the shear-
induced diffusivity is an increasing function of the volume fraction of
particles [14]. In this light, an analytical expression of effective force
acting on a hard sphere undergoing both Brownian and shear-induced
diffusion in a concentrated system is of great necessity, hence the in-
troduction of an irreversible chemical potential as a non-equilibrium
molar Gibb’s free energy.

The current literature lacks fundamental studies on microscopic
investigations of the critical lux during colloidal filtration, especially
as simultaneously influenced by Brownian and shear-induced diffusion
in a unified way. We chose a model filtration system consisting of non-
interacting hard spheres in a fast crossflow and performed the HFBMC
simulations using the effective drag force to identify the critical flux
in terms of particle size and shear rate. Our Monte Carlo simulations
showed good agreement with reported experimental observations.

2 Brownian and Shear-Induced Diffusion

2.1 Irreversible Chemical Potential

In thermodynamics, the chemical potential x4 is generally defined as a
molar Gibbs’ free energy, i.e., a partial derivative of Gibb’s free energy



G (T, P,n) with respect to the mole number of particles n:
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where T is the absolute temperature, and P is the pressure. For

convenience, this study considers Gibb’s free energy per particle f
defined as
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where N4 is Avogadro’s number. Incorporating nonequilibrium ther-
modynamics (18], it is proposed that /i consists of equilibrium (fie,)
and irreversible (fi;,) terms:

/l = ﬂeq + ,[‘ir (3)

Following Fgrland et al.’s and Hiemenz’s approaches [19, 20|, the gra-
dient of the generalized chemical potential is assumed to be equal to
the phenomenological diffusion force:

Vii = Fas (4)

with
Fdiﬁ = Feq + Fir (5)
where Fy, is the equilibrium diffusion force typically due to the con-
centration gradient (from the viewpoint of Fick’s law) and F, is the
irreversible diffusion force stemming from the irreversible chemical po-

tential, fi;;. By considering the physical origins for the forces, one can
write:

Viieq = Feq (6a)
Vi = Fy (6b)



2.2 Diffusivity Representations

Due to the two origins of diffusion phenomena, an effective diffusivity is
treated as a superposition of of equilibrium and irreversible terms. The
equilibrium part, D, is the generalized Stokes-Einstein diffusivity|21,
22, 23, 24]:

Deq = DS (¢) K (¢) (7)
with the Brownian self-diffusivity
kT
Dg = 6mna (®)
and 967 (4)
s(9) = 229 ()

where K (¢) is the sedimentation coefficient, 7 is the fluid viscosity, a
is the particle radius, and Z (¢) (= 1 {¢) /pksT) is the osmotic com-
pressibility. (Il and p are the osmotic pressure and number concen-
tration, respectively.) Especially for hard sphere systems, the exact
solution for the osmotic compressibility is known as the Carnahan-
Starling equation [25]:
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from which S (¢) is derived as
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The friction factor is known as

f =6mnaK ™" (¢) (12)



which represents the amount of drag force per diffusion speed.
We write the irreversible diffusivity, analogous to Eq. (7) as:

D;, = D1 K (¢) (13)

as a product of the shear-induced diffusivity Dg; and the sedimentation
coefficient. Dg; is represented as

Ds; = 4a*D (¢) (14)

where  is the shear rate (of the crossflow), and D (¢) is a dimension-
less function that indicates the dependency on the particle volume
fraction [12, 13, 14]:

~

D(g) = —;-gziz (1+0.56%) (15)

An extensive analysis of D (¢) was conducted by Sierou and Brady for
monodispersed identical spheres [26].
The generalized diffusivity is finally expressed as

D = Duq + Dir = | DsS () +7a*D (9)] K (¢) (16)

where the terms in the squared brackets contribute to enhancing con-
figurational randomness in reversible and irreversible ways, and the
sedimentation coeflicient contributes to the hydrodynamic hindrance
proportional to the volume fraction. Shear rate linearly increases the
irreversible diffusion, which may be the origin of the timely irreversibil-
ity of sheared colloidal suspensions [27]. The irreversible chemical po-
tential p;, is interpreted as energy dissipated when a particle moves
from a reference point (i.e., the membrane surface) back to a certain
position y away from the surface; and hence it appears as the origin
of the particle back-diffusion induced by the shear flow.



3 Critical Flux of Colloidal Crossflow Fil-
tration

3.1 Hydrodynamic Force Bias Monte Carlo

The normal transition probability of a particle during this Monte Carlo
.simulation is determined as

P, = min[l,exp (—BAE — AF - Ar)] (17)

where 0 = 1/k,T, A (= 0.5) is the well known parameter of the force
bias Monte Carlo simulation [28, 29], Ar (= rpew — Toq) is the random
trial displacement, AFE is in general the energy difference between the
new and old particle positions. F is the total force acting on each
particle, i.e.,

F=F,+F,+F, (18)

where Fy, Fy, and F; are gravitational, buoyant, and (mean-field)
hydrodynamic forces, respectively.

Since this study targets hard spheres to investigate effects of Brow-
nian and shear-induced diffusion on the critical flux, AE is always set
to zero unless particles overlap each other. When the particle moves
from ryq to ryew, a random number is generated (using FORTRAN
90 function rand), and is compared with the transition probability
P,. If the random number is less than or equal to P,, then the trial
movement is accepted, and the particle moves to the new position
I'new; Otherwise, movement is rejected, and the particle stays at the
old position r,q. If the particle undergoes any overlap at rpe, with
another particle, the trial movement is immediately rejected because
this situation is equivalent to AE — oo, which is thermodynamically
forbidden. All the simulations use 2100 particles, and in each MC cy-
cle all the particles attempt to randomly move to new locations via the
bias probabilities. The number of MC cycles is 1000, and statistical



data are collected during the second half of the simulation. Due to
the absence of strong pair-wise interparticle interactions, the filtration
system rapidly converges to a dynamic equilibrium state within the
first 500 MC cycles.

4 Results and Discussion

4.1 Critical Flux

The critical flux J_,;; determined using the hydrodynamic Monte Carlo
simulations is plotted in Fig. 1 with respect to the particle diam-
eter in comparison to Kwon et al.’s experimental observations [30].
Determination of one value of critical flux as shown in Fig. 1 requires
a series of simulations with a fixed value of particle diameter and
various permeate fluxes for the phase transition analysis. The total
number of simulations performed to obtain the critical fluxes of Fig.
1 is 60 for five different particle diameters with twelve permeate fluxes
per particle diameter.

Experimental work performed by Kwon et al. is summarized as
follows. Critical fluxes were determined using two different methods:
particle mass balance (PMB) and transmembrane pressure (TMP).
The PMB method defines the critical flux as the highest flux below
which no remarkable particle deposition is observed, and TMP proto-
col describes the critical flux as the flux below which the TMP does
not transiently increase to maintain the permeate flux. It is worth
noting that critical fluxes, predicted using our MC simulations and
measured by Kwon et al. using the PMB method, show reasonably
good agreement for particles greater than 0.3 pum. In general, our
HFBMC predicts slightly lower critical fluxes than their PMB-based
flux values, which can be explained in terms of inter-particle interac-
tions. The ionic strength used in their experiments is 1075 M, where
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Figure 1: Comparison of critical fluxes of HFBMC simulations and ex-
perimental observations by Kwon et al.[30] using particle mass balance
(PMB) and transmembrane pressure (TMP) methods. Operational
conditions are as follows: crossflow @ = 0.2 m/sec, ionic strength
IS = 107° M, and temperature T = 25°C. The length, width, and
height of the membrane channel are 60, 6, and 0.36 mm, respectively.
The estimated shear rate is o = 3.33 x 103 sec™!.



colloidal particles are ususally repulsive if their zeta potential is of an
order of O (10) mV in magnitude. Repulsive interparticle interactions
may mitigate particle deposition, attenuate structural bisection (i.e.,
concentration polarization), and so reduce values of the order parame-
ter. In other words, stronger repulsion between particles allows higher
critical flux below which no fouling occurs.

As noted above, the goal of the current study is to delineate in a
consistent way a base line of the critical flux using the non-interacting
hard spheres undergoing Brownian and shear-induced diffusion only,
i.e., pure equilibrium thermodynamic and non-equilibrium hydrody-
namic origins, respectively. Without enough shear rate (subject to
the particle size), the critical flux must decrease with respect to in-
creasing particle size since larger particles will undergo stronger hy-
drodynamic drag forces toward the membrane surface. Stronger shear
enhances back-diffusion of larger particles from the membrane surface
to the bulk phase even though their Brownina diffusion is negligible.
The HFBMC results shown in Fig. 1 indicate that the critical flux of
repulsive particles is higher than that of hard spheres larger than an
order of O (107!) um with shear rate of an order of O (10%) sec™.

The PMB result is close to the current HFBMC simulation be-
cause both deal with concentration polarization (i.e., spatial devia-
tion of particle distribution away from the uniform configuration) as
a main criteria to determine the critical flux. The PMB and HFBMC
both represent the first steady state near which the initial, noticeable
concentration polarization occurs with abrupt spatial bias of parti-
cle distribution. Therefore, the hydrodynamics (i.e., convective drag
force) and thermodynamics (i.e., Brownian and shear-induced diffu-
sion) are appropriately balanced in the steady state. Larger-scale sim-
ulations with accurate hydrodynamics (such as Stokesian dynamics)
are of great necessary for further investigation dealing with particle
motions near membrane pores [32, 33| as indicated by Kwon et al [30].



5 Conclusions

The HFBMC was developed to investigate the crossflow filtration of
colloidal hard spheres undergoing both Brownian and shear-induced
diffusion simultaneously. An effective hydrodynamic drag force act-
ing on a hard sphere in a concentrated shear flow within a membrane
channel is incorporated into the HFBMC simulations. Results of crit-
ical flux from the HFBMC using non-interacting hard spheres follow
the same experimental propensity of those estimated using the PMB
method [30]. This is because the experimental and simulation ap-
proaches are based on formation of the concentration polarization,
causing the initial deposition of particles as characterized by the bi-
ased distribution.
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