DOI QR코드

DOI QR Code

Permeation Flux of Ester Compounds through Hydrophobic Membrane by Pervaporation

투과증발에 의한 Ester 성분의 소수성막의 투과플럭스

  • 송근호 (강원대학교 LINC 사업단) ;
  • 이광래 (강원대학교 공과대학 화학공학과)
  • Received : 2016.05.09
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

The objective of this work was to investigate the performance of pervaporation process for recovery of ester compounds from model aqueous solutions and how the fluxes of esters and water were affected by changes in feed concentration and temperature. The flux of ethyl acetate (EA), propyl acetate (PA), ethyl propionate (EP), butyl acetate (BA), and ethyl butyrate (EB) increased with an increase in feed concentration from 0.15 wt% to 0.60 wt%, and increased with temperature change from $30^{\circ}C$ to $50^{\circ}C$. The flux of esters (EA, PA, EP, BA, and EB) was in order of (EA) < (PA, EP) < (BA, EB). This result meant that the flux strongly depended on affinity between esters and membrane surface; EA is the least hydrophobic because it has one hydrophobic function group ($-CH_2-$), (PA, EP) have two ($-CH_2-$), and (BA, EB) are the most hydrophobic because these have three ($-CH_2-$). As well as such an influence of hydrophobicity of ester molecules on ester flux, the influence of hydrophobicity of membrane surface on ester flux needs further investigation. With increase in temperature, water flux of aqueous EA, PA, EP, BA, and EB solution increased. However, water flux of aqueous ester solutions did not change appreciably with increase in concentration. This experimental results may be used as fundamental data for pervaporation (PV) to improve the aroma recovery process as an alternative to thermal evaporation and distillation processes.

에스테르(ester)의 모델 수용액으로부터 에스테르 성분을 회수하기 위한 투과증발 공정에서, 공급액의 농도와 온도 변화에 따른 에스테르와 물의 플럭스를 측정하였다. 공급액의 에스테르 농도가 0.15 wt%에서 0.60 wt%로 증가함에 따라 에틸 아세테이트(EA), 프로필 아세테이트(PA), 에틸 프로피오네이트(EP), 부틸 아세테이트(BA), 그리고 에틸 부티레이트(EB)의 플럭스는 증가하였으며, 공급액의 온도가 $30^{\circ}C$에서 $50^{\circ}C$로 증가함에 따라 플럭스가 증가하였다. 에스테르 플럭스의 크기는 (EA) < (PA, EP) < (BA, EB) 순서이었으며, 이는 에스테르와 막 표면과의 친화도에 크게 의존하는 것을 보여준다. 즉, EA는 분자쇄 내에 소수성 기($-CH_2-$)를 1개, (PA, EP)는 2개를 포함하고 있으나, (BA, EB)는 3개를 가지고 있어 가장 소수성이 크기 때문이다. 이러한 에스테르 분자의 소수성이 에스테르 플럭스에 미치는 영향뿐 아니라 막 표면의 소수성이 에스테르 플럭스에 미치는 영향에 관한 연구가 더 필요할 것이다. 온도가 증가함에 따라, EA, PA, EP, BA, and EB 수용액의 물 플럭스는 증가하였으나, 농도 변화에 따른 물 플럭스는 거의 변화가 없었다. 본 투과증발에 대한 실험결과는 기존의 열을 이용하는 증발공정과 증류공정을 대체할 수 있는 공정으로서 향 성분의 회수공정을 개선하는 기초 자료로 활용할 수 있을 것이다.

Keywords

References

  1. A. Baudot, I. Souchon, and M. Marin, "Total permeate pressure influence on the selectivity of the pervaporation of aroma compounds", J. Membr. Sci., 158, 167 (1999). https://doi.org/10.1016/S0376-7388(99)00018-6
  2. F. W. Greenlaw, W. D. Prince, R. A. Shelden, and E. V. Thompson, "Dependence of diffusive permeation rates on upstream and permeate pressures. I. Single component permeant", J. Membr. Sci., 2, 141 (1977). https://doi.org/10.1016/S0376-7388(00)83240-8
  3. H. O. E. Karlsson and G. Tragardh, "Aroma compound recovery with pervaporation - feed flow effects", J. Membr. Sci., 81, 163 (1993). https://doi.org/10.1016/0376-7388(93)85040-4
  4. H. O. E. Karlsson, S. Loureiro, and G. Troodh, "Aroma compounds recovery with pervaporation - temperature effects during pervaporation of a Muscat wine", J. Food Eng., 26, 177 (1995). https://doi.org/10.1016/0260-8774(94)00050-J
  5. J. Olsson and G. Tragardh, "Influence of feed low velocity on pervaporative aroma recovery from a model solution of apple juice aroma compounds", J. Food Eng., 39, 107 (1999). https://doi.org/10.1016/S0260-8774(98)00154-X
  6. N. Rajagopalan and M. Cheryan, "Pervaporation of grape juice aroma", J. Membr. Sci., 104, 243 (1995). https://doi.org/10.1016/0376-7388(95)00039-F
  7. M. H. V. Mulder and C. A. Smoders, "On the mechanism of separation of ethanol/water mixtures by pervaporation. I. Calculations of concentration profiles", J. Membr. Sci., 17, 289 (1984). https://doi.org/10.1016/S0376-7388(00)83220-2
  8. B. S. Cheon, S. I. Cheong, and J. W. Rhim, "Pilot test with pervaporation seperation of aqueous IPA using a composite PEI/PDMS membrane module", Membr. J., 25, 385 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.385
  9. Y. S. Jeon and J. W. Rhim, "Pervaporation separation of water/alcohol mixtures using PVA/SSA/PSSA_MA ion exchange membranes", Membr. J., 25, 327 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.327
  10. M. Cho, C. Kong, and Y. Lee, "Pervaporation of n-butanol/water mixture through organophilic ZSM-5 zeolite membrane", Membr. J., 21, 336 (2011).
  11. S. M. Woo, J. J. Choi, and S. Y. Nam, "Preparation of hydoxy polyimide membranes and their carbon dioxide permeation property", Membr. J., 22, 128 (2012).
  12. K. H. Song, J. H. Song, and K. R. Lee, "Vapor permeation of ethyl acetate, propyl acetate, and butyl acetate with hydrophobic inorganic membrane", Sep. Purifi. Tech., 30, 169 (2003). https://doi.org/10.1016/S1383-5866(02)00140-5
  13. J. G. Wijmans and R. W. Baker, "A simple predictive treatment of the permeation process in pervaporation", J. Membr. Sci., 79, 101 (1993). https://doi.org/10.1016/0376-7388(93)85021-N
  14. K. W. Bbdeker, G. Bengtson, and E. Bode, "Pervaporation of low volatility aromatics from water", J. Membr. Sci., 53, 143 (1990). https://doi.org/10.1016/0376-7388(90)80010-J
  15. I. Blume, J. G. Wijmans, and R. W. Baker, "The separation of dissolved organics from water by pervaporation", J. Membr. Sci., 49, 253 (1990). https://doi.org/10.1016/S0376-7388(00)80643-2