• Title/Summary/Keyword: Membrane Diffusion

Search Result 482, Processing Time 0.028 seconds

Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs (고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구)

  • Kang, Jung-Ho;Lee, Sang-Gun;Nam, Jin-Hyun;Kim, Charn-Jung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF

Non-equilibrium Monte Carlo Simulations for Critical Flux of Hard Sphere Suspensions in Crossflow Filtration

  • Kim, Albert S.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.33-47
    • /
    • 2008
  • Non-equilibrium (irreversible) themodynamics is used to investigate colloidal back-diffusion during crossflow membrane filtration. The chemical potential is generalized as a superposition of equilibrium and irreversible contributions, originating from Brownian and shear-induced diffusion, respectively. As a result, an effective drag force is derived using the irreversible thermodynamics for a particle undergoing both Brownian and shear-induced diffusion in a sheared concentrated suspension. Using the drag force, a hydrodynamic force bias Monte Carlo method is developed for crossflow membrane filtration to determine the critical flux of hard sphere suspensions. Effects of shear rate and particle size on the critical flux are studied, and results show a good agreement with experimental observations reported in the literature.

  • PDF

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

Hydrogen Separation by Compact-type Silica Membrane Process (컴팩트 타입 실리카막 공정을 이용한 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Lee, Sang-Jin;Chung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

The Study on Surface Modification of Alumina Membrane by CVD (CVD에 의한 알루미나 멤브레인의 표면개질에 관한 연구)

  • 이동호;최두진;현상훈;고광백
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1349-1356
    • /
    • 1995
  • The change of permeation mechanism from Knudsen diffusion to micropore diffusion was observed after CVD modification of an alumina-sol coated alumina support which was prepared by slip coating process. Permselectivities of He/N2, H2/N2, and CO2/N2 were 5.67, 5.02, and 1.44, respectively. These values were higher than those under Knudsen diffusion controlled region.

  • PDF

Study on the Hindered Diffusion Within Disordered-Fibrous Membrane and Gels(I) (불규칙 섬유상(disordered-fibrous) 멤브레인이나 젤(gel)에서의 제한적 확산(hindered diffusion) 현상에 관한 연구(I))

  • 전명석;김재진
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.139-140
    • /
    • 1997
  • 1. 서론 : 한외 및 정밀여과의 분리메카니즘에 연관된 물리적 현상에 대해 현재까지 진행된 많은 연구들은, 막기공이 갖는 복잡하고 불규칙한 구조를 단순하고 규칙적인 well-defined 구조인 실린더형이나 슬릿형 기공으로 가정하여 문제를 전개하고 있다. 본래, 다공성 매질(porous media)에서의 유체흐름을 다루는 이론 및 실험연구자들에 의해 제안된 섬유상 매질(fibrous media)에 대한 해석은 계의 미세구조(microstructure)에 추계적 개념을 적용시키려는 최근의 추세에 따라 점차 관심이 높아가고 있다.(생략)

  • PDF

Prediction of PolymerSolvent Diffusion Coefficients Using Free-Volume Theory (자유부피이론을 이용한 고분자/용매 확산계수의 예측)

  • 홍성욱
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.27-30
    • /
    • 1997
  • 1. Introduction : Molecular diffusion of small molecules in polymers plays an important role in many areas where polymers are acting as barriers, and in separation processes, such as selective diffusion. Different applications of polymers have different requirements on their transport properties. Therefore, reliable predictions of diffusion coefficients for small molecules in polymeric materials could be a useful tool to design appropriate materials. For many years, the theories based on free-volume concepts have been widely used to correlate and predict diffusion behavior in polymer/solvent systems. In the theory derived by Vrentas and Duda, the empty space between molecules that is available for molecular transport, referred to as hole free-volume, is being redistributed. Molecular transport will occur only when a free-volume of sufficient size appears adjacent to a molecule and the molecule has enough energy to jump into this void. The diffusive jump is considered complete when the void left behind is closed before the molecule returns to its original position. In this paper, the Vrentas-Duda free-volume theory is presented and the methods to estimate free-volume parameters for predicting polymer/ solvent diffusion coefficients are described in detail.

  • PDF

A Numerical Analysis for Estimations of Osmotic Pressure of Colloidal Suspension and Gradient Diffusion Coefficient of Particles from Permeate Flux Experiments (투과플럭스 실험으로부터 콜로이드 서스펜션의 삼투압과 입자의 구배확산계수 산출을 위한 수치적 해석)

  • 전명석
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • A novel methodology on the calculations of osmotic pressure and gradient diffusion coefficient has been provided ill the present study, by applying a succinct numerical analysis on the experimental results. Although both the osmotic pressure and the gradient diffusion coefficient represent a fundamental characteristic in related membrane filtrations such as microfiltration and ultrafiltration, neither theoretical analysis nor experiments can readily determine them. The osmotic pressure of colloidal suspension has been successfully determined from a relationship between the data of the time-dependent permeate flux, their numerical accumulations, and their numerical derivatives. It is obvious that the osmotic pressure is gradually increased, as the particle concentration increases. The thermodynamic coefficient was calculated from the numerical differentiation of the correlation equation of osmotic pressure, and the hydrodynamic coefficient was evaluated from the previously developed relation for an ordered system. Finally, the estimated gradient diffusion coefficient, which entirely depends on the particle concentration, was compared to the previous results obtained from the statistical mechanical simulations.

Study for Transport and Separation Mechanisms of $CO_2/N_2$ Mixture on Organic Templating Silica/Alumina Composite Membrane by Using Generalized Maxwell Stefan model (Generalized Maxwell Stefan 모형을 이용한 유기 템플레이팅 실리카/알루미나 복합막의 $CO_2/N_2$ 혼합물의 투과/분리 기구 해석)

  • Lee Chang-Ha;Moon Jong-Ho;Kim Min-Bae;Kang Byung-Sub;Hyun Sang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.43-51
    • /
    • 2004
  • In this study, gas permeation and separation characteristics of $CO_2$ and $N_2$ on nano-porous TPABr(Tetrapropylammoniumbromide) templating silica/alumina composite membrane were studied by using GMS (Generalized Maxwell Stefan) model. Since the transport mechanisms of meso-porous alumina support are Knudsen diffusion and viscous diffusion(or poiseulle flow), they can be identified by DGM (dusty gas model). The transport mechanism of TPABr templating silica layer, which would contribute mainly to the separation of $N_2/CO_2$ mixture, showed surface diffusion rather than pore diffusion. Therefore, the oermeationjseparation mechanisms in multi-component suface diffusion were successfully analyzed by the GMS model. In the separation of $N_2/CO_2$ mixture using the composite membrane, $CO_2$, the strongadsorbate, was permeated through the membrane more than Na due to the pore-blocking phenomena of $CO_2$ by adsorption isotherm and solace diffusion.

  • PDF