• 제목/요약/키워드: Membership function.

검색결과 759건 처리시간 0.024초

Relationship Among h Value, Membership Function, and Spread in Fuzzy Linear Regression using Shape-preserving Operations

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.306-311
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

Modeling of vision based robot formation control using fuzzy logic controller and extended Kalman filter

  • Rusdinar, Angga;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권3호
    • /
    • pp.238-244
    • /
    • 2012
  • A modeling of vision based robot formation control system using fuzzy logic controller and extended Kalman filter is presented in this paper. The main problems affecting formation controls using fuzzy logic controller and vision based robots are: a robot's position in a formation need to be maintained, how to develop the membership function in order to obtain the optimal fuzzy system control that has the ability to do the formation control and the noise coming from camera process changes the position of references view. In order to handle these problems, we propose a fuzzy logic controller system equipped with a dynamic output membership function that controls the speed of the robot wheels to handle the maintenance position in formation. The output membership function changes over time based on changes in input at time t-1 to t. The noises appearing in image processing change the virtual target point positions are handled by Extended Kalman filter. The virtual target positions are established in order to define the formations. The virtual target point positions can be changed at any time in accordance with the desired formation. These algorithms have been validated through simulation. The simulations confirm that the follower robots reach their target point in a short time and are able to maintain their position in the formation although the noises change the target point positions.

A study on fuzzy-neural control of nonlinear system

  • Oh, Jae-Chul;Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.36-39
    • /
    • 1996
  • This paper proposes identification and control algorithm of nonlinear systems and the proposed fuzzy-neural network has following characteristics. The network is roughly divided into premise and consequence. The consequence function is nonlinear function which consists of three parameters and the membership function in the premise contains of two parameters. The parameters in premise and consequence are learned by the extended back-propagation algorithm which has a modified form of the generalized delta rule. Simulation results on the identification show that this method is more effective than that of Narendra [3]. The indirect fuzzy-neural control is made of the fuzzy-neural identification and controller. Result on the indirect fuzzy-neural control shows that the proposed fuzzy-neural network can be efficiently applied to nonlinear systems.

  • PDF

FUZZY GOAL PROGRAMMING FOR MULTIOBJECTIVE TRANSPORTATION PROBLEMS

  • Zangiabadi, M.;Maleki, H.R.
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.449-460
    • /
    • 2007
  • Several fuzzy approaches can be considered for solving multi-objective transportation problem. This paper presents a fuzzy goal programming approach to determine an optimal compromise solution for the multiobjective transportation problem. We assume that each objective function has a fuzzy goal. Also we assign a special type of nonlinear (hyperbolic) membership function to each objective function to describe each fuzzy goal. The approach focuses on minimizing the negative deviation variables from 1 to obtain a compromise solution of the multiobjective transportation problem. We show that the proposed method and the fuzzy programming method are equivalent. In addition, the proposed approach can be applied to solve other multiobjective mathematical programming problems. A numerical example is given to illustrate the efficiency of the proposed approach.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

선형예측계수에 기초한 퍼지추론 단어 인식 (Word Recognition using Fuzzy Inference based on LPC)

  • 최승호;김형근
    • 한국음향학회지
    • /
    • 제13권1호
    • /
    • pp.32-41
    • /
    • 1994
  • LPC열로 구성된 음성패턴의 주파수변동을 해결하기위해 LPC와 스펙트럼, LPC차수와 스펙트럼의 관계를 고찰하여 새로운 형태의 멤버쉽함수를 제안하였다. 또한, 시간변동을 해결하기위해서는 음성구간을 여러구간으로 등간격분할하는 다구간 등분할법을 사용하였으며, 이때 오인식은 주로 동일음절이 같은 발성위치에 있을때 발생되었다. 이러한 오인식을 줄이기위해 제안된 멤버쉽함수로 퍼지추론한뒤 구간별 확신도에 가중치를 부여하고, 세번째후보까지를 인식대상으로 하는 판정알고리즘을 제안하였다. 본 방법의 타당성을 검증하기위해, DDD지역명 28개를 대상으로 인식실험한결과, 삼각형멤버쉽함수에 의한 퍼지추론은 $92.0\%$, 삼각형멤버쉽함수에의한 퍼지추론과 판정알고리즘은 $92.9\%$, 제안된 멤버쉽함수에의한 퍼지추론과 판정알고리즘은 $93.8\%$의 인식률을 보였다.

  • PDF

가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출 (Extracting Wisconsin Breast Cancer Prediction Fuzzy Rules Using Neural Network with Weighted Fuzzy Membership Functions)

  • 임준식
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.717-722
    • /
    • 2004
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NNWFM)을 이용하여 Wisconsin breast cancer의 예측을 수행하는 퍼지규칙을 추출하고 있다. NNWFM는 자기적응적(self adaptive)가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이론 기반으로 예측을 수행한다. 신경망 구조의 중간 부분인 하이퍼박스(hyperbox)들은 n개의 대, 중, 소의 가중 퍼지소속함수 집합으로 구성되며, 학습 후 각 집합은 퍼지집합의 bounded sum을 사용하여 다시 하나의 가중 퍼지소속함수로 합성된다. n개의 특징입력(feature input)은 학습된 모든 하이퍼박스에 연결되어 예측 작업을 수행한다. NNWFM으로 추출된 2개의 퍼지규칙은 99.41%의 예측 인식율을 가지며 이는 퍼지규칙의 수와 인식율에 있어 현재 발표된 논문의 결과보다 우수함을 보여준다.

퍼지 클러스터링을 이용한 심전도 신호의 구분 알고리즘에 관한 연구 (A Study on Labeling Algorithm of ECG Signal using Fuzzy Clustering)

  • 공인욱;권혁제;이정환;이명호
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.427-436
    • /
    • 1999
  • This paper describes an ECG signal labeling algorithm based on fuzzy clustering, which is very useful to the automated ECG diagnosis. The existing labeling methods compares the crosscorrelations of each wave form using IF-THEN binary logic, which tends to recognize the same wave forms such as different things when the wave forms have a little morphological variation. To prevent this error, we have proposed as ECG signal labeling algorithm using fuzzy clustering. The center and the membership function of a cluster is calculated by a cluster validity function. The dominant cluster type is determined by RR interval, and the representative beat of each cluster is determined by MF (Membership Function). The problem of IF-THEN binary logic is solved by FCM (Fuzzy C-Means). The MF and the result of FCM can be effectively used in the automated fuzzy inference -ECG diagnosis.

  • PDF

퍼지 및 신경망을 이용한 Blending Process의 최적화 (Blending Precess Optimization using Fuzzy Set Theory an Neural Networks)

  • 황인창;김정남;주관정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

퍼지이론을 이용한 임상검사 자동분석에 관한 연구 - 간기능검사 결과 자동분석시스템 - (Automated Clinical best Result Analysis System - Application to liver function test -)

  • 차은종;이태수
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권4호
    • /
    • pp.341-348
    • /
    • 1993
  • Automated system to analyze liver function test results is presented based on fuzzy logic knowledge. Clinician's knowledge and experience was first expressed in linguistic terms fol- lowed by conversion to numerical values to create membership functions of disease possibility for each test item and liver disease. Membership functions were then compensated for different relative importances of test items. Liver diseases considered were acute viral hepatitis (AVH), chronic persistent hepatitis(CPH), chronic active hepatitis(CAH), and liver cirrhosis(LC), Liver function test results of alanine aminotransferase(ALT), aspartate amino- transferase(AST) , glutamate dehydrogenase(GDH), ornithine carbamyltransferase(OCT) , ALT/AST, and 10* GDH/ALT in 218 patients were analyzed by the present system, welch resulted in 80% accuracy. AVH and CAH showed the highest 93 % and the lowest 58% ac- curacies, respectively, which was similar to the clinician's expectation. The simple mathemat- ical formulation of the present system would enable an easy implementation in commercial analysis instruments. Also, the identical fuzzy logic can be applied to similar diagnostic envi- ronments in general.

  • PDF