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Abstract 

A modeling of vision based robot formation control system using fuzzy logic controller and extended Kalman filter is presented in this paper. 
The main problems affecting formation controls using fuzzy logic controller and vision based robots are: a robot’s position in a formation 
need to be maintained, how to develop the membership function in order to obtain the optimal fuzzy system control that has the ability to do 
the formation control and the noise coming from camera process changes the position of references view. In order to handle these problems, 
we propose a fuzzy logic controller system equipped with a dynamic output membership function that controls the speed of the robot wheels 
to handle the maintenance position in formation. The output membership function changes over time based on changes in input at time t-1 to 
t. The noises appearing in image processing change the virtual target point positions are handled by Extended Kalman filter. The virtual 
target positions are established in order to define the formations. The virtual target point positions can be changed at any time in accordance 
with the desired formation. These algorithms have been validated through simulation. The simulations confirm that the follower robots reach 
their target point in a short time and are able to maintain their position in the formation although the noises change the target point positions. 
 
Keywords : Formation control, Fuzzy logic controller, Extended Kalman filter 
 
 

1. Introduction 
 
The formation control problem in robots has been widely 

studied over the past several years. We can safely say that the 
formation control requires a multi-agent system. A multi-agent 
system is a system that consists of more than one agent, i.e. 
vehicle that employs several sensor/actuators and has the 
capability to communicate with other agents in order to 
perform coordinates tasks. 

Several methods have been proposed to solve the formation 
control problem and its applications. Jennings et al. [1] used 
formation control for search and rescue applications. They 
employed MOVER, a programming system used for distributed 
tasks and state communications. Desai et al. [2] used graph 
theory to maintain a desired formation and to change the 
formation when required. They modeled the team in three parts 
(g, r, H), consisting of a group element g that describes the 
gross position of the lead robot. r describes the relative 
positions of the robots and H describes the behavior of the 
robots in the formation.  

Uncertainty and imprecision are the two main problems encountered 

in a control system. Errors arising from imprecision are often associated 
with measurement. Several techniques have been proposed to solve the 
control problems. A Fuzzy Logic Controller (FLC) is well suited to 
handle these problems. Fuzzy logic has become a means of collecting 
empirical knowledge and experience and then deal with the uncertainties 
in the control process. The fuzzy logic system introduced by Zadeh [3] 
has become a popular topic in control engineering because it is 
considered by designers to be the simplest solution available for a specific 
problem. The advantages of fuzzy logic over more traditional solutions is 
that it allows computers to reason like a human, responding effectively to 
complex inputs in order to deal with linguistic control situation.  

Membership functions and rules are two importance aspects 
of FLCs. Many techniques have been introduced in order to 
develop a membership function and its rules. Jou et al. [4] have 
presented a type of adaptive fuzzy logic controller (AFLC). 
Their system can perform an adaptive fuzzy inference process 
using various inference parameters, such as shape and location 
dynamically and quickly.  

This paper presents formation control algorithms using a 
fuzzy logic controller system (FLC) employing dynamic 
membership functions. Through the use of these dynamic 
membership functions, the robots have the ability to control 
their speed and maintain their formation position. We used 
FLC because fuzzy logic is well suited to low cost 
implementations based on cheap sensors. Such systems can be  

 
Fig. 1. The robots in triangular and line formations. 
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easily upgraded by adding new rules that improve performance 
or address new features.  The algorithm and the simulation 
were built using Matlab. The robots use a two wheel drive 
robot system. The speeds of the right and left wheels are 
controlled by the fuzzy system. The robots use a pan-tilt 
camera as a sensor to detect the other robot positions and 
orientations. In each robot, a unique marker is attached to robot 
body. These markers provide identity information that 
distinguish one robot from another. Through image processing, 
not only the robot can be identified but also the angle and 
distance between the followers and the leader can be calculated. 
We presented this “landmark” system in a previous paper [5]. 
Other piece of equipment used by the robots in our simulations 
is a communication system. The leader has ability to send code 
to the followers. The code is used by the followers to change 
the formation based on the formation virtual target point. There 
are two formations used in our simulation: triangular and line 
formations. 

The main points of this study are:  
i) A fuzzy logic controller system that employs a dynamic 
output membership function.  
ii) Noises that always appear in vision system are simulated in 
this study, Extended Kalman filter is used to estimate the target 
point position. 

The rest of the paper is organized as follows: The formation 
control system model is described in Section 2. The Extended 
Kalman filter is described in section 3. The Fuzzy logic control  
system for the robot controls is explained in Section 4. The 
simulation results are examined in Section 5. Our conclusions 
and possible future improvements are discussed in Section 6. 
 
 

2. The formation control system model 
 
The distance, the leader robot orientation, and the leader position 

angle estimated by the follower robots are used as the basic variables 
in the formations control system. The formation is determined using 
virtual points that are calculated from the leader position. The virtual 
points therefore are the displacement from the leader position. In this 
study, the variables are calculated according to the followers frame, 
or in other words, the followers position in the global frame is 
Pxy(0,0). 
Fig.1 shows the robots do the formation in triangular and line 
formations. The formation system starts with the triangular 
formation. The followers maintain the formation with respect 
to the leader. Under this condition, the linear velocity of the 
follower robots is not constant, because when the leader turns 
right or left the radii of their respective trajectories are different, 
so the followers need to control their position in respect to their 
distance and position in the formation. When the formation is 
changed from the triangular to line formation, the followers 
change their virtual point based on the leader position. The 
leaders are determined by particular identity of the robots. The 
smaller identity leads the higher identity. In other words, R1 is 
the leader of R2 and R2 is the leader of R3. Collision 
avoidance is used when the formation is changed. 

  
 

Fig. 2. The coordinate system of leader follower robot. 
 
 

2.1. The motion models and the coordinate point 
 
Fig. 2 shows the coordinate system used in the robot’s 

formation position. The variables recognized by the sensor or 
camera are the distance between the follower and leader, the 
leader orientation, and the angle from follower to leader. The 
variables are labeled ρr, φ, and β respectively. Using these 
variables, the attached landmark position Pl(x,y) in follower 
frame is defined by xl=ρr sin β and yl= ρr cos β, which can then 
be written as Pl=[xl, yl+d, φ]T. The follower robot position is 
defined by,  

 
              Pr=Rz,φ Pl , (1) 

 
where Pr = [xr, yr, 0] is the leader position in the follower frame 
and d is distance of the landmark to center point. The virtual 
target point follower frame is defined by  

 
              Pg=Pr + Rz,φ Pvt , (2) 

 
where Pvt = [xvt, yvt, 0]T is the virtual point position in leader 
frame, Pg = [xg, yg, φ] is the virtual point position in follower 
frame, and Rz,φ is rotation matrix in z-axis defined by  
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The variables used in the formation control system are: the 

error distance between the followers and the virtual points, the 
error angle view of the follower robot to the virtual points, and 
the changes in the distance, namely ρ, α, and ∆ ρ respectively. 
The variables are defined by:      

 
              α  =arctan2(xg, yg),  (4) 
              ρ  = (xg

2+yg
2)1/2,  (5) 

              ∆ρ =ρt – ρt-1, (6) 
The individual robot kinematic can be represented in 

following form:   
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robot orientation with respect to the global frame. The control 
parameters for the robot motion are left and right wheel speed, 
the robot speed and angular velocity, which can be defined by: 

 

                   
2

L Rv vv +
= ,   (8) 

                   L Rv v
L

ω −
= , (9) 

 
where vL and vR are the linier velocity of the left and right 
wheels of the robot, and L is the width of the robot. Since vL 
and vR are the control variables used in the simulation, (7)-(9) 
can be simplified to:   
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2.2. Collision avoidance scheme 

 
A collision avoidance control algorithm is proposed that uses 
the partition region algorithm or a partition zone. Fig. 3 
displays the partition zone control method. The virtual target 
points in each zone are determined based on the follower 
position in the leader robot frame. 

There are three zones built for use in the collision avoidance 
control algorithm. The zones are determined by coordinate 
from each robots view and the center coordinate is in the robot 
its self. Pxy is the other robot position in the one robot view 
frame. Zone I is determined by Px > 0 AND Py > 0. Zone II is 
determined by Px < 0 AND Py > 0. Zone III is determined by Py 
< 0. Pxy is defined by:  

 
 

 
 

Fig. 3 The partition zone in collision avoidance. 
 

Px = –xr cos φ – yr sin φ,  (11) 
              Py = xr sin φ – yr cos φ.  (12) 
 
 
The target selection is defined by  
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where T is target point in each region determined by T1, T2, 
and T3. T1, T2, and T3 are the virtual target points when the 
follower robot position is in regions 1, 2, and 3, respectively. 
The target points are defined using (4), where T1, T2, and T3 
are defined by Pg with Pvt = [xvt, 0, 0]T, Pvt  = [–xvt, 0, 0]T, and 
Pvt = [0, –yvt, 0]T respectively. 

 
 

3. The Extended Kalman filter 
 
Extended Kalman filter is used to estimate the target point 

position based on its input (vision) and output (wheels speed). 
The Kalman filter state is modeled by  

 
           1 1t t t t− −= + +x Ax Bu w  , (14) 
 

and the measurement is modeled as,   
 
           t t t= +z Hx v , (15) 
 

where xt and xt-1 are state vector at time t and t-1 respectively, A 
is an n x n matrix which is related to the state at time t-1. B is 
the n x m matrix that relate to the control input u, and wt-1 is a 
process noise in time step t-1. zt is a measurement state. H is an 
n x m matrix that relate to the measurement zt, and vt is 
measurement noise. In simulation the state is defined as 

1 1 1 1[ , , ]T
t t t tx y θ− − − −=x .  

Since the movement equation (11) is used, the model of our 
Extended Kalman filter is simple. Matrix A become identity 
matrix and H constant became H=[1 1 0] and [ , , ]T

t t t tBu x y θ=    

where [ , ]T
tu vL vR= , and B is defined by, 
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Random noises are also added into wt-1 and vt.  

The Kalman filter processes consisted of two stages: the time 
update equation and measurement update equation. The 
prediction state is given by,  
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respect to xt and process noise wt-1, Wt is the Jacobian matrix of 
partial derivative of f with respect to driving function u, given 
as Wt = B.  

The measurement update equations are given by, 
 
         1( )T T T

t t t z
−= +K P H HP H VE V , (19) 

         ( )t t t t t= + −x x K z Hx , (20) 

         ( )t t t= − HP I K P , (21) 
 

where K is Kalman gain, Ez is an measurement noise matrix 
respect to vt, V is the measurement Jacobian at time t, and I is 
an identity matrix.  

 
 

4. The Fuzzy logic controller 
 

The fuzzy logic control system consists of two parallel fuzzy 
inference systems, FIS-1 and FIS-2. Fig. 4 shows the proposed 
fuzzy logic controller system. The FIS-1 controls the speed of 
the right and left robot wheels according to the error distance 
and error point view follower to leader at time t. The FIS-2 
controls the output membership function of FIS-1 according to 
the error distance and the changes of error distance from prior 
error distance (at time t-1) to the current error distance.  
 

 

Fuzzifier Inference 
system

Defuzzifier RobotFIS-2+ _

FIS - 1

EKF

ρt-1

 
 

Fig. 4 The proposed fuzzy logic controller system block 
diagram. 

 

 
 

Fig. 5. The membership function in the adaptive fuzzy control 
system. 

4.1 The two wheels drive robot fuzzy control 
The inputs entered into the fuzzy logic control system are ρ, α, 
and ∆ρ taken from (4)-(6). Fig. 5 shows the all of membership 
functions in the adaptive control system. There are three inputs 
membership function (μ(α), μ(ρ), and μ(∆ρ)) and two outputs 

membership function (μ(v) and μ(VN)). The error angle fuzzy 
sets (α) are defined by “Left”, “Center”, and “Right”. They 
denote that the follower heading is too far to the left, right, or 
centered on the target point, respectively. γ is the variable used 
to define the tolerance error of the follower heading and π is the 
angle in radian. 

The fuzzy set for the error distance (ρ) is defined as “Close”, 
“Enough”, and “Far”. The variables d0, dn, d1, and dmax are 
the minimum distance error, the distance error tolerance, the 
maximum distance error tolerance, and the maximum distance 
error, respectively. The outputs of the FIS-1 are variables 
denoted the level of the left and right wheel speeds. The 
membership function output is dynamic controlled by VN. The 
change of VN is determined by FIS-2 with respect to the 
changes in the error distance (∆ρ) and the actual error distance 
(ρ). The linguistic variable of the fuzzy sets of the output 
membership functions are defined by “Slow”, “Medium”, and 
“Fast”. 

 
Table1. The rules of FIS-1 

 Left wheel rules Right wheel rules 

 Left Center Right Left  Center Right 
Close  S S S S S S 
Enough M M S S M M 
Far F F M M F F 

 

The intersection of the error in the robot orientations and the 
error distance with the respective membership functions μ(α) 
and μ(ρ) is the fuzzy set μ(v), written as  

 
                μv = Min[uα, μρ]. (22) 
 
There are 18 rules for the two wheel combination. The base 

rules for the fuzzy system FIS-1 are listed in table 1. Using 
these, the final fuzzy output in the speed of the right and left 
wheel are determined using : 

               1

1

( )
_

n

i i
i

n

i
i

z
Final ouput

µ

µ
=

=

×∑
=

∑
, (23) 

where μi is the aggregated output memberships function, and  
zi is the output result for every rules, where a (in Fig. 5) is a 
variable used to define the width of the medium membership 
function.   

Table 2. The rules of FIS-2 

 Close Enough Far 
Positive M H H 

Zero M M M 
Negative L L M 

        
4.2 The Dynamic output membership function 

The error distance changes and the actual error distance are 
used as inputs in the dynamic membership function. FIS-2 
serves to control the output membership function VN. The 
linguistic variables of the error distance changes (∆ ρ) are 
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determined by “Positive”, “Zero”, and “Negative”. The 
membership function of dynamic VN is shown in Fig.5. The 
linguistic variables of the VN value are determined by “High”, 
“Middle”, and “Low”. The base rules for FIS-2 listed in table 2. 

 
 

5. Simulation result 
 

We designed the robots motion simulation and tested the 
a lgor i thm in to  the s imulat ion .  In  simulat ion ,  the 
communication system between robots are assumed already 
exist and work properly. We simulate that the communication 
of follower robots only have ability receive data from leader, 
the leader has ability send data to all followers. From the 
simulation results, the comparison between dynamic 
membership function and the static output membership 
function are showed. Fig. 6 and Fig.7 show the results of the 
simulation using the static output membership function with 
two robots. With VN=1.5 for Fig.6 and VN=2 for Fig.7, a = 0.5, 
and γ = 15 for both of them, Fig. 6.(a) shows that the follower 
robot was left behind of the leader when the leader turn right. 
The trajectory indicated by the arrow shows that the trajectory 
of the follower is close to the leader trajectory. This means that 
when the follower tried to catch up to the leader, it took the 
shortest path. This happens because of the speed of the virtual 
point is higher than the leader speed. Fig. 6.(b) shows the error 
position of the follower to the target. In the time span from 
about second 15 to second 20, it can be seen that the error 
distance between the follower positions to the virtual point 
became longer because the follower was left behind of the 
virtual position. In Fig.6.(c), the arrow shows that the position 
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             (c)                      (d) 

Fig. 6. The robot formation control using static membership 
function with Vn=1.5 (a-b) and VN=2 (c-d). 

of the left side follower is too close to the leader, when the 
leader turns left. It means that follower speed is too high. It 
makes the radius turning of follower is too long. Fig. 6.(d) 
shows the error position of follower to the target. It shows that 
at second 18, the follower position is too close to the virtual 

point. This happens because the follower cannot adequately 
control its speed when the leader moves slowly and turns left. 

Fig. 7 shows the trajectory of leader follower robots when 
the follower used the dynamic output membership functions. It 
shows that the follower was able to maintain its distance to the 
target point. This proves that the follower has the ability to 
control its speed and maintain its position in the formation. Fig. 
7.(b) shows the error position of the follower to the target point. 
It shows that the error is better than when the fuzzy used the 
static output membership function. 

Fig.8 shows the output of VN value changes every time. The 
values of the membership function VN (Using Vnmin = 1.5, Vnmax  
= 2, and Vm = 1.7) are put into the dynamic input membership 
function fuzzy set (Fig. 5). The VN was then determined by 
using the fuzzy rules from table 2. Comparing Fig. 6 to Fig.7, it 
can be observed that the errors seen at second 15 to 20 were 
eliminated. This is attributed to the membership function VN 
which adapts to the changes in the distance error.  

Fig. 9 shows the target point position and target point 
position with noise. In the figure, the noises from camera 
processing make the targets point position of follower were not 
in the actual position. Fig. 10 shows the target point position 
estimation and target point position with noise. It shows that 
the EKF able to estimates the target point positions. The black 
dots indicate the target point read by robot, the green line in Fig. 
9 denoted the actual target point, and the red line in Fig. 10 is 
the estimation position estimated by EKF.   

Fig. 11 shows the robots formation control movement. The 
formation consisted of three robots. The red circles designate 
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Fig. 7. The robot formation control using dynamic membership 

function. 
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Fig. 9. The actual target point and target point with noise. 
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Fig. 10. The target point estimation using EKF and target point 

with noise. 
 

obstacles. In this simulation the leader is the only robot that has 
the ability to recognize these obstacles. When the leader detects 
an obstacle, it sends a code to other robots to change the  
formation into a line formation. The second robot (R2) follows 
the leader and the third robot (R3) follows the second robot 
(R2). Fig. 11(a) shows that the robots are able to maintain the 
distance and speed necessary to perform a triangle formation 
and preparing for changing the formation. R2 changes the 
target point to be in line with the leader. R3 then puts the target 
point in line with the R2. It is show that R3 is able to avoid a 
collision with R2 and then follow in line with R2. Fig. 11(b) 
shows the line formation to avoid the obstacles. Figs. 11(c-d) 
show that the formation is changed from line to triangular form. 

 
 

6. Conclusion 
 
This paper presents a formation control method based on a 

fuzzy logic controller system that employs a dynamic output 
membership function and Extended Kalman filter. By using this 
dynamic output membership function, the simulations show that 
the robots are able to maintain their distance and speed, and are 
able to form formations according to environmental conditions 

with simple rules (table 1 and table 2).  
In noise reduction process, Extended Kalman filter has ability  
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            (c)                       (d) 
Fig. 11. The membership function in the adaptive fuzzy control 

system. 
 

to estimate the target point position.   
The simulation results show that the proposed algorithm has 

the ability to form and change the robot formation and avoid 
collisions between the robots. The simulations movie can be seen 
in http://youtu.be/zCASF4I12rA 
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