• 제목/요약/키워드: Melting state

검색결과 226건 처리시간 0.032초

고상법에 의한 Leucite 합성 (Leucite Synthesis from Solid-State Sintering)

  • 윤동섭;이병하
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.282-286
    • /
    • 2005
  • 인공치과재료인 도재에 백류석(Leucite)결정을 이용해 왔는데, 이는 치과재료에 함께 사용하는 금속재질의 열팽창계수가 크기 때문에 이에 맞추기 위한 것이다. 산업적으로는 카리 장석으로부터 부조화 용융으로 leucite 결정을 합성하여 이용하고 있으며 이는 $1150^{\circ}C$ 이상에서 생성된다. 본 연구는 치과 재료에 사용하는 leucite를 보다 낮은 온도에서 조화 용융으로 합성하기 위한 것이다. 이를 위하여 카리 장석을 주원료로, 그 이외에 탄산칼륨, 수산화알루미늄을 사용하여 화학 양론적인 조성으로 고상합성법을 이용하여 leucite 합성 실험을 하였다. 그 결과 leucite를 조화 용융으로 $950^{\circ}C$부터 고상법으로 합성되었다.

High Optical Anisotropy Nematic Single Compounds and Mixtures

  • Gauza, Sebastian;Kula, Przemyslaw;Dabrowski, Roman;Sasnouski, Genadz;Lapanik, Valeri
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.2-5
    • /
    • 2012
  • We have designed, synthesized, and evaluated the physical properties of some high birefringence (${\Delta}n$) isothiocyanato biphenyl-bistolane liquid crystals. These compounds exhibit ${\Delta}n^-$ 0.4-0.7 at room temperature and wavelength $\lambda$=633 nm. Laterally substituted short alkyl chains and fluorine atom eliminate smectic phase and lower the melting temperature. The moderate melting temperature and very high clearing temperature make those compounds attractive for eutectic mixture formulation. Several mixtures based on those compounds were formulated and its physical properties evaluated.

Surface and Corrosion Properties of Electrolytic Polished 316L Stainless Steel by Double Melting (VIM and VAR)

  • Hyunseung Lee;Gangsan Kim;Seungho Han;Man-Sik Kong;Jung-Yeul Yun;Si Young Chang
    • 한국주조공학회지
    • /
    • 제43권5호
    • /
    • pp.223-229
    • /
    • 2023
  • In this study, STS316L produced by a double-melting process involving vacuum induction melting (VIM) and vacuum arc remelting (VAR) was subjected to extrusion and drawing to form a tube and was subsequently electrolytic polished (EP). The grain size of the obtained STS316L without EP was approximately 55 ㎛, with no difference found after EP. The thickness of the EP layer was measured by AES and TEM, showing values of approximately 10 nm and 15 nm, respectively. After EP, the Cr/Fe and CrO/FeO ratios of the passive layer increased from 1.48 to 1.62 and from 2.15 to 2.26, respectively, while the surface roughness decreased significantly from 0.255 to 0.024 ㎛. Consequently, the corrosion rate decreased in both NaCl and HCl solutions after the EP process. Additionally, the amounts of eluted Cr and Fe ions were reduced from 1.2 to 0.8 ppb and 10.3 to 0.8 ppb, respectively. Furthermore, polarization tests revealed that STS316L treated with EP required a lower current density to reach a passive state, indicating that corrosion behavior was retarded.

고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략 (Solid Dispersion as a Strategy to Improve Drug Bioavailability)

  • 박준형;전명관;조훈;최후균
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Assessment of the severe accident code MIDAC based on FROMA, QUENCH-06&16 experiments

  • Wu, Shihao;Zhang, Yapei;Wang, Dong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.579-588
    • /
    • 2022
  • In order to meet the needs of domestic reactor severe accident analysis program, a MIDAC (Module Invessel Degraded severe accident Analysis Code) is developed and maintained by Xi'an Jiaotong University. As the accuracy of the calculation results of the analysis program is of great significance for the formulation of severe accident mitigation measures, the article select three experiments to evaluate the updated severe accident models of MIDAC. Among them, QUENCH-06 is the international standard No.45, QUENCH-16 is a test for the analysis of air oxidation, and FROMA is an out-of-pile fuel rod melting experiment recently carried out by Xi'an Jiaotong University. The heating and melting model with lumped parameter method and the steam oxidation model with Cathcart-Pawel and Volchek-Zvonarev correlations combination in MIDAC could better meet the needs of severe accident analysis. Although the influence of nitrogen still need to be further improved, the air oxidation model with NUREG still has the ability to provide guiding significance for engineering practice.

CFD MODELING VEGETATED CHANNEL FLOWS: A STATE-OF-THE-ART REVIEW

  • Choi Sung-Uk;Yang Won-Jun
    • Water Engineering Research
    • /
    • 제6권3호
    • /
    • pp.101-112
    • /
    • 2005
  • This paper presents the state of the art of the CFD applications to vegetated open-channel flows. First, important aspects of the physics of vegetated flows found through the laboratory experiments are briefly reviewed. Then, previous CFD applications to one-dimensional vertical structure, partly-vegetated flows, compound open-channel flows with floodplain vegetation, and fully three-dimensional numerical simulations are reviewed. Finally, topics for further researches such as relationship between the resistance and flexural rigidity, additional drag due to foliages, and melting the experience of CFD with the depth-averaged modeling, are suggested.

  • PDF

Skull melting법에 의한 Al2O3 파우더 용융 (Melting of Al2O3 powder using the skull melting method)

  • 최현민;김영출;석정원
    • 한국결정성장학회지
    • /
    • 제29권1호
    • /
    • pp.24-31
    • /
    • 2019
  • 사파이어 단결정을 성장시키는 기존 합성방법들의 원료충진율을 높이기 위한 방법으로 스컬용융법을 사용하여 $Al_2O_3$ 파우더를 용융시켰다. 냉각도가니 크기는 내경 24 cm, 내부 높이 30 cm로서 2.75 MHz 발진주파수에서 15 kg의 $Al_2O_3$ 파우더를 1시간 내에 모두 용융시켰으며, 3시간 동안 융액상태로 유지 후 자연냉각 시켰다. 냉각된 잉곳의 부분별 면밀도 및 성분은 SEM-EDS를 통해 분석하였다. 잉곳의 면밀도 및 $Al_2O_3$ 함량은 고주파유도가열 시 냉각도가니 내부에 형성되는 온도 분포와 관련이 있으며, 온도가 높게 형성되었던 부분이 면밀도 및 순도가 높게 나타나는 경향을 보였다.

계면 제어를 기반으로 한 고성능 전고체 전지 연구 (Review of interface engineering for high-performance all-solid-state batteries)

  • 황인수;이현정
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

리플로우과정의 용융 거동에 미치는 전기주석 도금층의 결정 형상 및 구조의 영향 (Effects of morphology and structure of electrolytic tin coating layers on the flow melting behaviors during reflow treatment)

  • 김태엽;조준형;이재륭;배대철;홍기정
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.373-380
    • /
    • 2000
  • The flow melting behavior of the electrolytic tinplate during reflow treatment was investigated in terms of morphology and structure of coating layers which were electrodeposited with variation of electrolyte temperature. It was commonly found that the nucleation density of the electrodeposits showed little difference with the electrolyte temperature, and the growth of electrodeposited tin occurred along <100> direction of (002) plane. At low electrolyte temperature, the (002) plane of tin nucleated paralleling to the substrate and grew perpendicularly to the substrate, which rendered porous rod-like deposits. With increasing the temperature, the (002) plane nucleated declining $15^{\circ}$ to the substrate and also grew to the normal <100> direction, which enabled lateral growth of the tin crystals and rendered compact deposits. During reflow treatment, the matte deposit transformed to the reflowed state via transition regions consisted of contraction, island formation, and wetting . The matte deposits formed at low temperature exhibited wide transition regions because of poor thermal transfer between crystals due to their porous nature. While that formed at high temperature transformed very rapidly to the reflowed state by enhanced thermal transfer between the compact crystals.

  • PDF

스컬용융법에 의한 Na사규소운모 합성 및 특성평가 (Synthetic and characterization of Na-tetrasilicic fluorine mica by skull melting method)

  • 석정원;최종건
    • 한국결정성장학회지
    • /
    • 제19권4호
    • /
    • pp.190-195
    • /
    • 2009
  • 스컬용융법에 의해 Na사규소운모를 합성하였다. $Mg_3(OH)_2Si_4O_{10}:Na_2SiF_6:SiO_2=8.3:24.8:66.9$ mol% 비율로 혼합한 출발원료를 ${\phi}13{\times}H14cm$의 냉각도가니에 채우고 2.84MHz 출력주파수의 고주파발진기를 이용하여 가열하였다. 원료는 융액상태에서 1시간 유지하였으며 도가니 내에서 냉각시켰다. 운모의 비저항은 추정하였으며, 원주모양과 판상으로 합성할 수 있었다.