• Title/Summary/Keyword: Melting point

Search Result 829, Processing Time 0.023 seconds

Novel Maskless Bumping for 3D Integration

  • Choi, Kwang-Seong;Sung, Ki-Jun;Lim, Byeong-Ok;Bae, Hyun-Cheol;Jung, Sung-Hae;Moon, Jong-Tae;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.342-344
    • /
    • 2010
  • A novel, maskless, low-volume bumping material, called solder bump maker, which is composed of a resin and low-melting-point solder powder, has been developed. The resin features no distinct chemical reactions preventing the rheological coalescence of the solder, a deoxidation of the oxide layer on the solder powder for wetting on the pad at the solder melting point, and no major weight loss caused by out-gassing. With these characteristics, the solder was successfully wetted onto a metal pad and formed a uniform solder bump array with pitches of 120 ${\mu}m$ and 150 ${\mu}m$.

Density, Absorption and Table Flow properties of the Lower melting Point of the Modified Sulfur and General Industrial Sulfur (일반 공업용 유황과 융점을 낮춘 개질유황의 유동성, 흡수율 및 밀도 특성)

  • Kim, Heon-Tae;Lee, Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.45-46
    • /
    • 2015
  • Recently, the large amount of sulfur is globally generated by the development of the petroleum refining industry every year. In this study, without the use of the sulfur with a high melting point used in the previous studies, the modified sulfur mortar with addition of a melting point of about 65℃ were tested to determine their distribution and strength properties according to the mixing method and curing conditions. This study is a test to find out the Density, Absorption and Table Flow of the modified sulfur and general sulfur. As result, general industrial sulfur flow was lower, showed a high absorption rate.

  • PDF

Study on the Nucleation of Liquid Metal in Solidification (액체금속의 응고에서 핵생성에 관한연구 -Bi 용탕의 핵생성에 미치는 초음파진동의 영향에 대하여-)

  • ;;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.113-124
    • /
    • 1977
  • By spplying the ultrasomic wave to the solidifing liquid metal, grain sizes of the ingot are refined and the structures are homogenized. One of the reason is the enhancement of nucleation by ultrasonic vibration. According to the reports on this subject, the uncleating conditions are formed by the increse of melting point which is produced by the high pressure due to caviation. In this paper we study whether the caviations are the orgin of the nucleation and analized whether the nucleating conditions are formed by the increase of melting point or not and also compared the analytical result with the experim nt. We analized the pressure change induced by cllaphsing of cavity and the motion of cavith in oscillating pressure field. And we further analized the variation of melting point with pressure change.

Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants (카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구)

  • Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • The low viscous epoxy resin(bisphenol F) with carboxylic acid as the reductants was introduced for high performance and reliability in the ACA with a low melting point alloy filler system. The curing characteristics of the epoxy resin and temperature dependant viscosity characteristic of epoxy resin at the melting temperature of LMPA were investigated by dynamic mode of differential scanning calorimetry (DSC) and rheometer, respectively. Based on these thermo-rheological characteristics of epoxy resin and LMPA, the optimum process system was designed. In order to remove the oxide layer on the surface of LMPA particle, three different types of carboxyl acid-based reductant were added to the epoxy resin. The wetting angles were about $18^{\circ}$ for carboxypropyldisilioxane, and $20.3^{\circ}$ for the carboxy-2-methylethylsiloxane, respectively.

Effects of Tempering Temperature and Time on the Slip Melting Point of Fats (처리 온도 및 시간이 고형 유지의 상승 융점에 미치는 영향)

  • Yi, Young-Soo;Chang, Young-Sang;Shin, Zae-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 1991
  • Among the conditions changes for the slip melting point of tempering temperature and time were studied. The results were treated below at $4^{\circ}C$, slip M.P. were not effected by tempering time. But slip M.P. of lard and palm oil had fallen treated at $10^{\circ}C$, the reason was that low melting triglycerides did not form the perfect crystals. Therefore, in order to measure the slip M.P. should be decrease the free energy and from stable crystallization of fats. Recommendable tempering temperature was treated at $4^{\circ}C$.

  • PDF

Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals (저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구)

  • Kim, Min Sang;Park, Chun Woong;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

The Study of Encapsulation Technique for Microcapsule Using Core Materials with Low Melting Point (저융점을 가진 Core 물질을 이용한 내구성 Microcapsule 제조 기술)

  • Noh, Kun-Ae;Gang, Eu-Gene;Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.273-284
    • /
    • 2001
  • A series of microcapsule were synthesized by using several PCM(Phase Change Material) as a core material and gelatin/arabic gum, melamine/formaldehyde as a shell material. Coacervation technique and in situ polymerization were adopted in synthesizing microcapsules. In the microencapsulation by coacervation, tetradecane and octadecane were used as core materials. In the microencapsulation by situ polymerization tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and nonadecane were used as core material. The synthesized microcapsule was examined to observe the shape of the microcapsule. The particle size analysis was performed by particle size analyzer. The thermal properties(e.g. melting point, heat of melting, crystallization temperature, heat of crystallization, differences between melting point and crystallization temperature) were obtained by DSC(Differential Scanning Calorimeter). The stirring rate effect was investigated during the microencapsulation. It was found that with increasing the stirring rate much smaller microcapule was produced. However, this did not necessarily lead to formation of spherical microcapsule.

Design of Low-Melting Metal Fuse Elements of Current Sensing Type Protection Device for Large Capacity Secondary Battery Protection System (대용량 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 저융점 금속 가용체 설계)

  • Kim, Eun Min;Kang, Chang yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • High-capacity secondary batteries can cause explosion hazards owing to microcurrent variations or current surges that occur in short circuits. Consequently, complete safety cannot be achieved with general protection that is limited to a mere current fuse. Hence, in the case of secondary batteries, it is necessary for the protector to limit the inrush current in a short circuit, and to detect the current during microcurrent variations. To serve this purpose, a fuse can be employed for the secondary battery protection circuit with current detection. This study aims at designing a protection device that can stably operate in the hazardous circumstances associated with high-capacity secondary batteries. To achieve the said objective, a detecting fuse was designed from an alloy of low melting point elements for securing stability in abnormal current states. Experimental results show that the operating I-T and V-T characteristic constraints can be satisfied by employing the proposed current detecting self-contained low melting point fuse, and through the resistance of the heating resistor. These results thus verify that the proposed protection device can prevent the hazards of short circuit current surges and microcurrent variations of secondary batteries.

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

Study on the melting characteristics of the Fe-C eutectic temperature fixed-point (Fe-C 공정 온도 고정점의 용융 특성에 대한 연구)

  • Kim, Yong-Gyoo;Yang, In-Seok;Gam, Kee-Sool
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.257-262
    • /
    • 2006
  • A Fe-C eutectic cell for thermocouple calibration was manufactured and tested to investigate its phase transition characteristics in the thermocouple thermometry. It was observed that the freezing plateaus were strongly affected by the freeze-inducing temperature $T_{f}$. In case of the melting process, the melting plateau was influenced by the previous thermal history. As $T_{f}$. in the previous freezing was lower, the melting plateau became lower with a temperature dependence as small as $-0.0015^{\circ}C/^{\circ}C$. Therefore, it was found that the freeze-inducing temperature should be fixed to obtain a reproducible phase transition temperature in the melting. After fixing $T_{f}$, the melting process was examined and it was found that long and flat melting plateau was obtained within a reproducibility of about ${\pm}0.01^{\circ}C$. Based on the observed results, it was recommended that Fe-C eutectic temperature be best realized for the melting process with a melt-inducing temperature of $+3^{\circ}C$ above the expected liquidus temperature after freezing at $-5^{\circ}C$ below the solidus temperature.