• Title/Summary/Keyword: Melting method

Search Result 840, Processing Time 0.033 seconds

Evaluation and Comparison of the Solubility Models for Solute in Monosolvents

  • Min-jie Zhi;Wan-feng Chen;Yang-bo Xi
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • The solubility of Cloxacillin sodium in ethanol, 1-propanol, isopropanol, and acetone solutions was measured at different temperatures. The melting property was also tested by using a differential scanning calorimeter (DSC). Then, the solubility data were fitted using Apelblat equation and λh equation, respectively. The Wilson model and NRTL model were not utilized to correlate the test data, since Cloxacillin sodium will decompose directly after melting. For comparison purposes, the four empirical models, i.e., Apelblat equation, λh equation, Wilson model and NRTL Model, were evaluated by using 1155 solubility curves of 103 solutes tested under different monosolvents and temperatures. The comparison results indicate that the Apelblat equation is superior to the others. Furthermore, a new method (named the calculation method) for determining the Apelblat equation using only three data points was proposed to solve the problem that there may not be enough solute in the determination of solubility. The log-logistic distribution function was used to further capture the trend of the correlation and to make better quantitative comparison between predicted data and the experimental ones for the Apelblat equation determined by different methods (fitting method or calculation method). It is found that the proposed calculation method not only greatly reduces the number of test data points, but also has satisfactory prediction accuracy.

Optimization of an Injection Molding Process for Polycarbonate Car Switch Buttons Using the Taguchi Method (실험계획법에 의한 폴리카보네이트 차량 스위치 버튼의 사출성형공정 최적화)

  • Kim, Cheol;Park, Jaewoo
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • The quality of polymeric automotive parts depends highly on an injection molding process, which causes various defects, such as warpage, sink marks, weld lines, shrinkage, residual stress, etc. This study is to determine the optimum processing parameters, such as packing pressure, mold temperature, melting temperature, and packing time for the manufacture of polycarbonate buttons in cars on the basis of FEM, the Taguchi method, and analysis of variance (ANOVA). As a result, the optimum processing parameters of buttons made of polycarbonate material were obtained as follows: 140 MPa of packing pressure, $105^{\circ}C$ of mold temperature, $292.5^{\circ}C$ of melting temperature and 1 second of packing time. A gain of S/N (signal to noise) ratio, 10.2, was obtained with the optimum values. Moreover, the melting temperature was found to be the most significant factor followed by the mold temperature.

Peptide Nucleic Acid Probe-Based Analysis as a New Detection Method for Clarithromycin Resistance in Helicobacter pylori

  • Jung, Da Hyun;Kim, Jie-Hyun;Jeong, Su Jin;Park, Soon Young;Kang, Il-Mo;Lee, Kyoung Hwa;Song, Young Goo
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.641-647
    • /
    • 2018
  • Background/Aims: Helicobacter pylori eradication rates are decreasing because of increases in clarithromycin resistance. Thus, finding an easy and accurate method of detecting clarithromycin resistance is important. Methods: We evaluated 70 H. pylori isolates from Korean patients. Dual-labeled peptide nucleic acid (PNA) probes were designed to detect resistance associated with point mutations in 23S ribosomal ribonucleic acid gene domain V (A2142G, A2143G, and T2182C). Data were analyzed by probe-based fluorescence melting curve analysis based on probe-target dissociation temperatures and compared with Sanger sequencing. Results: Among 70 H. pylori isolates, 0, 16, and 58 isolates contained A2142G, A2143G, and T2182C mutations, respectively. PNA probe-based analysis exhibited 100.0% positive predictive values for A2142G and A2143G and a 98.3% positive predictive value for T2182C. PNA probe-based analysis results correlated with 98.6% of Sanger sequencing results (${\kappa}$-value=0.990; standard error, 0.010). Conclusions: H. pylori clarithromycin resistance can be easily and accurately assessed by dual-labeled PNA probe-based melting curve analysis if probes are used based on the appropriate resistance-related mutations. This method is fast, simple, accurate, and adaptable for clinical samples. It may help clinicians choose a precise eradication regimen.

Synthesis and characterization of CaZrO3:Pr3+ phosphor by skull melting method (스컬용융법에 의한 CaZrO3:Pr3+ 형광체 합성 및 특성분석)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.228-232
    • /
    • 2021
  • Ca1-xZrO3:xPr phosphor with perovskite structure was successfully synthesized by using skull melting method. The crystal structure, morphology and optical properties of synthesized phosphor were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet fluorescence reaction and photoluminescence. The XRD results indicated that single crystals of CaZrO3:Pr3+ belongs to orthorhombic perovskite system. The synthesized phosphor could be excited by UV light (254 nm) and the emission spectra results indicated that green luminescence of CaZrO3:Pr3+ due to charge transfer transition 3P03H4, 3P13H5 and 3P03H5 at 506, 536 and 548 nm was dominant.

A Study on the Solidification and Purification of High Purity Aluminium and Silicon by Stirring Method (냉각체 회전법에 의한 고순도 알루미늄 및 규소의 응고 및 정련에 관한 연구)

  • Kim, Wook;Lee, Jong-Ki;Baik, Hong-Koo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.303-313
    • /
    • 1991
  • The Purification mechanism of high purity aluminum was studied through the variation of stirring speed and coolant flow rate in the stirring method. In the stirring method the degree of purification was changed as the following factors;the variation of diffusion boundary layer thickness the variation of growth rate and the solute concentration of the residual melt. The concentration of Fe and Si was decreased as the stirring speed and the radial distance increased. In a high stirring speed of 2000rpm with unidirectional stirring mode, the uniformity of solutes was obtained. On the other hand, the purification of Si was done by the combinations of stirring method, fractional melting and acid leaching. In the case of Si purification, the centrifugal force developed in the melt acted as the significant purification factor. It was possible to obtain the purified 3N grade Si crystal after the complete elimination of residual aluminum by fractional melting and acid leaching.

  • PDF

Solid Dispersion as a Strategy to Improve Drug Bioavailability (고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략)

  • Park, Jun-Hyung;Chun, Myung-Kwan;Cho, Hoon;Choi, Hoo-Kyun
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.