• Title/Summary/Keyword: Melt temperature

Search Result 902, Processing Time 0.027 seconds

Experimental & Numerical Result of the filling of Micro Structures in Injection Molding (미세 구조물의 충전에 관한 실험 및 수치해석)

  • Lee J.G.;Lee B.K;Kwon T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

Modelling and Simulation on Non-isothermal Expansion of Water Oversaturated Perlite (퍼라이트 비등온 팽창 모델 및 전산모사)

  • Kim, Ji-Hwan;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.397-401
    • /
    • 2008
  • To verify model adaptation and flexibility, non-isothermal simulation for perlite expansion has been carried out. Temperature-dependent perlite properties are applied to energy equations for bubble temperature change and perlite melt temperature gradient. Bubble temperature is changed with volume change, water evaporation, and heat flux from melt. Temperature gradient of perlite melt is affected by decreasing bubble temperature. As a result, prediction model and code have been developed below 1100 K with 5% accuracy. At 1100~1400 K, lower 7% accuracy has been obtained from the calculation results.

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters (용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구)

  • Jeung, Woo Chang;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.

Fabrication of mineral fiber via melt spinning method from blast furnace slag

  • Wang, Xiao-Song;Hur, Bo-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2014
  • Mineral fiber, or be called mineral wool when it assembles in large amounts, is a kind of wide applied man-made material with excellent thermal and acoustic insulation properties. In this work, mineral fiber was produced via melt spinning method by using iron blast furnace slag as raw material. Two critical experimental parameters for fabrication were investigated: melt pouring temperature and rotating speed of spinning wheels. The mineral fiber produced under the condition of melt pouring temperature $1500^{\circ}C$ and spinning speed 4000 rpm, showed the smoother surface and most quality, while the others had rough surfaces or with heavy shots. In general, mineral fibers with the size in the range of $12{\sim}49{\mu}m$ in diameter and 8~130 mm in length can be fabricated by this method, and the production rate is more than 34 wt.%, which could be up to 57 wt.% at maximum.

Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy (($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Lee, Jae-Chul
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

Fabrication of a large grain YBCO bulk superconductor by homo-seeding melt growth method

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • To fabricate large grain YBCO bulk superconductors by melt process, Sm123 single crystal with a high melting point are mostly used as seeds. However, it also uses Y123 film deposited on MgO single crystal substrate. This study investigated the growth behavior of the Y123 grain during a melt process when single grain YBCO bulk was used as a seed. Single grain Y123 bulk was grown when the seed size was small. When the seed size was relatively large, multiple grains were grown but the grains were still large. Y123 seed crystal was completely decomposed during high temperature anneal at 1040℃ and new Y123 crystals were nucleated during a slow cooling stage below a peritectic temperature. Thereafter, newly formed Y123 crystals from the seed area are thought to grow into the Y1.8 powder compact. The crystallographic orientations of newly nucleated Y123 grains are independent of the crystallographic orientation of Y123 seed. It is thought that the crystallographic orientation of newly nucleated Y123 crystal can be controlled by using Y211-free Y123 single crystal as a seed of homo-seeding melt growth.

Water Vapour Permeable/Water Resistant and Heat Resistant Finishing of Footwear Fabric (신발용 직물의 투습방수 및 내열성 가공)

  • Lee, Jae Ho;Choi, Hae Wook
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.16-25
    • /
    • 2006
  • Water vapour permeable and water resistant film was laminated to made footwear woven fabric and non-woven fabrics by screen type with thermosetting reactive hot melt adhesive. Optimum conditions of each process were investigated, and the properties of film laminated fabric with optimum conditions are evaluated. The results are as follows. Thermosetting reactive polyurethane hot melt is retain proper heat resistance differently thermoplastic hot melt. Optimum melting adhesive process conditions are as follows ; drum temperature $95^{\circ}C$, hose temperature $97^{\circ}C$, feeding pipe temperature $100^{\circ}C$, screen temperature $105^{\circ}C$, pressure of opposite roller $1kgf/cm^2$, pressure of laminating roller $3kgf/cm^2$, finishing speed 15 m/min, melting temperature $120^{\circ}C$, cooling time 20 s, pressing temperature $130^{\circ}C$, pressing time 30 s. As the thickness of film was increased, the water vapour permeability was decreased but water resistance was increased, and the effect of film is dominant over all the others in the air permeability.

  • PDF

A Study on the Microstructures and High Temperature Tensile Properties of Ni-base Superalloy Melt-Spun Ribbons (Ni 기 초합금 급냉응고 리본의 미세구조와 고온 인장특성에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.180-184
    • /
    • 2014
  • In order to make clear relationship between high temperature tensile properties and fine microstructure of rapidly solidified cast-type Ni-base superalloys without heat treatment required for consolidation process, tensile test was carried out by changing strain rate from $5{\times}10^{-5}s^{-1}$ to $2{\times}10^{-2}s^{-1}$ and test temperature from $900^{\circ}C$ to $1050^{\circ}C$ using IN738LC and Rene'80 melt-spinning ribbons by twin roll process which were superior to ribbons by single roll process from the viewpoint of structure homogeneity. The dependence of tensile strength on strain rate and test temperature was studied and strain rate sensitivity, m, were estimated from tensile test results. From this study, it was found that tensile strength was influenced by ${\gamma}^{\prime}$ particle diameter, test temperature and strain rate, and m of ribbons exhibited above 0.3 over $950^{\circ}C$.

NUMERICAL INVESTIGATION OF THE SPREADING AND HEAT TRANSFER CHARACTERISTICS OF EX-VESSEL CORE MELT

  • Ye, In-Soo;Kim, Jeongeun Alice;Ryu, Changkook;Ha, Kwang Soon;Kim, Hwan Yeol;Song, Jinho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The flow and heat transfer characteristics of the ex-vessel core melt (corium) were investigated using a commercial CFD code along with the experimental data on the spreading of corium available in the literature (VULCANO VE-U7 test). In the numerical simulation of the unsteady two-phase flow, the volume-of-fluid model was applied for the spreading and interfacial surface formation of corium with the surrounding air. The effects of the key parameters were evaluated for the corium spreading, including the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The results showed a reasonable trend of corium progression influenced by the changes in the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The modeling of the viscosity appropriate for corium and the radiative heat transfer was critical, since the front progression and temperature profiles were strongly dependent on the models. Further development is required for the code to consider the formation of crust on the surfaces of corium and the interaction with the substrate.

Processing Characteristics of Nylon 6 by Controlling the Melt Viscosity (용융 점도 조절에 의한 나일론6의 가공특성 연구)

  • Kim Hyogap;Kim Jun Kyung;Lim Soonho;Lee Kunwong;Park Min;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.565-570
    • /
    • 2005
  • Melt processing characteristics of nylon 6 (N6) has been investigated by controlling the melt viscosity in melt impregnation process. Calcium stearate (CaST) was introduced as a lubricant for N6 and the melt viscosity of N6 decreased with adding only 1 wt$\%$ of CaST. In addition, reactive blending with polycaprolactone (PCL) was carried out by lowering the melt viscosity in N6. It was found that the melt viscosity of N6 could be controlled and further melt viscosity drop could be obtained by applying phenyl phosphite (PP) and diphenyl phosphite (DPP) to enhance the transesterification between N6 and PCL. Our approaches show that the melt viscosity of N6 could be reduced without loss of thermal stability which is the critical problem in high temperature melt impregnation process of N6.