• Title/Summary/Keyword: Melt electrospinning

Search Result 16, Processing Time 0.067 seconds

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.

Effects of Melt-viscosity of Polyethylene Mixtures on the Electrospun-fiber Diameter Using a Oil-circulating Melt-electrospinning Device (열매유형 용융전기방사장치를 이용한 폴리에틸렌 혼합물의 용융점도와 섬유직경의 상관관계 연구)

  • Yang, Hee-Sung;Kim, Hyo-Sun;Na, Jong-Sung;Seo, Young-Soo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.518-524
    • /
    • 2014
  • Electrospinning has gained interests as a polymer processing technique for nanofiber fabrications. It is well known that both polymer solutions and polymer melts can be electrospun. Among them, melt electrospinning is environmentally friendly technique due to the absence of solvent. However, the diameter of melt-electrospun fibers is typically thicker than solution-electrospun fibers. By using a home-made melt-electrospinning device, micron-sized fibers with smooth and even surfaces were electrospun successfully. We demonstrate that low-density polyethylene fibers can be reduced in diameter with a viscosity-reducing additive such as low molecular weight polyethylene monoalcohol and polyethylene wax. The diameter was further reduced by blending it with oxidized polyethylene wax due to polarity increment. Additionally, parameters affecting the diameter were analyzed such as an applied voltage and a spinning distance.

Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil (납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조)

  • Kim, Jinhoon;Lee, Sung Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.402-406
    • /
    • 2013
  • In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

Effect of Processing Variables on the Acrylic Fiber Fineness during Electrospinning (전기방사시 공정조건이 아크릴 섬유의 선밀도에 미치는 영향)

  • 심현주;이승훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.390-391
    • /
    • 2003
  • 극세사를 제조하는 방식은 복합방사 방식 외에 고온, 고속의 공기를 이용하여 연신된 초세화 섬유를 fiber web으로 제조하는 melt-blown방식과 전기방사(electrospinning)등이 있다. 전기방사에 의한 방식은 용액방사와 용융방사에 의한 방식이 가능하여 적용 고분자의 종류가 보다 다양할 뿐 아니라 공정자체가 semi-static하여 연속 필라멘트의 제조가 가능하며 전기장에 의하여 섬유가 분리됨으로, 사용 고분자에 따라 영구대전이 가능할 뿐 더러 melt-blown 방식에 의한 fiber web보다 개섬성이 우수하며, 수집된 fiber web의 random화가 용이하고, 방사 후 섬유간의 협착을 방지 할 수 있는 등 많은 장점을 갖고 있다. (중략)

  • PDF

Nanofibers from electrically driven viscoelastic jets: modeling and experiments

  • Carroll, Colman P.;Zhmayev, Eduard;Kalra, Vibha;Joo, Yong-Lak
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.153-164
    • /
    • 2008
  • Modeling and experiments of three electrospinning systems have been presented and they are i) axisymmetric instabilities in electrospinning of various polymeric solutions, ii) non-isothermal modeling of polymer melt electrospinning, and iii) control of nanoparticle distribution and location via confined self-assembly of block copolymers during electrospinning. It has been demonstrated that predicted simulations are in good agreement with corresponding electro spinning experiments, and theoretical analysis provides fundamental understanding of phenomena that take place during electrospinning of various polymeric liquids.

Study on Spinning Behavior and Structure of Polyester Fibers by the Melt-type Electrospinning Method (용융형 전기방사법에 의한 폴리에스테르섬유의 방사거동과 구조에 관한 연구)

  • Lee, Jin-Ah;Lim, Min-Soo;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.273-276
    • /
    • 2002
  • The fiber formation of conventional melt spinning is extruded by forcing the polymer melt through a spinneret by pumping mechanism usually involving high pressure. This is followed by cooling, solidification and appropriate drawing of the fiber. The spinning process is broadly applicable to polyolefin, polyamide, polyester and indeed the whole range of fibers forming thermoplastic polymers. (omitted)

  • PDF

Fabrication of Polymer Nanofibers using Electrospinning (전기방사법을 이용한 고분자 나노섬유 제조)

  • Kim, Gil-Tae;Ahn, Young-Chull;Lee, Ju-Young;Choi, Jae-Won;Shin, Hee-Soo;Lee, Jae-Keun;Sung, Chang-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1869-1874
    • /
    • 2003
  • Polymeric fibers with nanometer-scale diameters are produced by electrospinning. When the electrical forces at the surface of a polymer solution or melt overcome the surface tension then electrospinning occurs. Polyethylene oxide (PEO), Polycarbonate have been electrospun in our laboratory. Electrospun fibers are observed by optical microscopy or scanning electron microscopy. The average diameters of the electrospun fibers range from 300 nm to 30 nm when the electric field strength increasing from 1 kV/cm to 3 kV/cm. The average diameters of the electrospun fibers range from 200 nm to 30 nm when the concentration decreasing from 10 wt% to 4 wt%.

  • PDF

Fabrication of Polymer Nanofibers using Electrospinning (전기방사를 이용한 PEO 나노섬유 제조)

  • Kim, G.T.;Ahn, Y.C.;Lee, J.K.;Kattamuri, Nirupama;Sung, C.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Polymeric fibers with nanometer-scale diameters are produced by electrospinning method. When the electrical forces at the surface of a polymer solution or melt overcome the surface tension, then electrospinning occurs and nanofibers are made. Polyethylene oxide(PEO) have been electrospun in our laboratory Electrospun PEO fibers are observed by scanning electron microscopy or transmission electron microscopy In thl:; study. the average diameter of the electrospun fibers decreases with decreasing PEO concentration and increasing electric field strength. The optimal conditions for producing uniform PEO 100nm fibers are the 10wt% PEO concentration at a voltage 25 to 30kV and a distance of 10cm from tip to collector.

  • PDF