Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.4.518

Effects of Melt-viscosity of Polyethylene Mixtures on the Electrospun-fiber Diameter Using a Oil-circulating Melt-electrospinning Device  

Yang, Hee-Sung (Department of Nano Science and Technology, Sejong University)
Kim, Hyo-Sun (Department of Nano Science and Technology, Sejong University)
Na, Jong-Sung (Department of Nano Science and Technology, Sejong University)
Seo, Young-Soo (Department of Nano Science and Technology, Sejong University)
Publication Information
Polymer(Korea) / v.38, no.4, 2014 , pp. 518-524 More about this Journal
Abstract
Electrospinning has gained interests as a polymer processing technique for nanofiber fabrications. It is well known that both polymer solutions and polymer melts can be electrospun. Among them, melt electrospinning is environmentally friendly technique due to the absence of solvent. However, the diameter of melt-electrospun fibers is typically thicker than solution-electrospun fibers. By using a home-made melt-electrospinning device, micron-sized fibers with smooth and even surfaces were electrospun successfully. We demonstrate that low-density polyethylene fibers can be reduced in diameter with a viscosity-reducing additive such as low molecular weight polyethylene monoalcohol and polyethylene wax. The diameter was further reduced by blending it with oxidized polyethylene wax due to polarity increment. Additionally, parameters affecting the diameter were analyzed such as an applied voltage and a spinning distance.
Keywords
melt electrospinning; melt-electrospun fiber; polyethylene mixture; melt-viscosity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. D. Dalton, J. L. Calvet, A. Mourran, D. Klee, and M. Moller, Biotechnol. J., 1, 998 (2006).   DOI   ScienceOn
2 S. N. Malakhov, A. Y. Khomenko, S. I. Belousov, A. M. Prazdnichnyi, S. N. Chvalun, A. D. Shepelev, and A. K. Budyka, Fibre Chem., 41, 355 (2009).   DOI   ScienceOn
3 E. Zhmayev, D. H. Cho, and Y. L. Joo, Polymer, 51, 274 (2010).   DOI   ScienceOn
4 H. Zhou, T. B. Green, and Y. L. Joo, Polymer, 47, 7497 (2006).   DOI   ScienceOn
5 L. Larrondo and R. S. J. Manley, J. Polym. Sci., Part B: Polym. Phys., 19, 909 (1981).   DOI
6 E. Zhmayev, D. H. Cho, and Y. L. Joo, Polymer, 51, 4140 (2010).   DOI   ScienceOn
7 Y. Liu, S. Chen, E. Zussman, C. S. Korach, W. Zhao, and M. Rafailovich, Macromolecules, 44, 4439 (2011).   DOI   ScienceOn
8 S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An introduction to electrospinning and nanofibers, World Scientific, Singapore, 2005.
9 P. D. Dalton, D. Gragahrend, K. Klinkhammer, D. Klee, and M. Moller, Polymer, 48, 6823 (2007).   DOI   ScienceOn
10 J. M. Lyons, Melt-electrospinning of Thermoplastic Polymers:An Experimental and Theoretical Analysis, Drexel University, USA, 2004.
11 S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002).   DOI   ScienceOn
12 W. J. Kim, Y. M. Shin, J. S. Park, H. J. Kwon, Y. S. Kim, H. S. Shin, Y. C. Nho, Y. M. Lim, and M. S. Chong, Polymer(Korea), 36, 124 (2012).
13 R. Deng, Y. Liu, Y. Ding, P. Xie, L. Luo, and W. Yang, J. Appl. Polym. Sci., 114, 166 (2009).   DOI   ScienceOn
14 O. Hardick, B. Stevens, and D. G. Bracewell, J. Mater. Sci., 46, 3890 (2011).   DOI
15 I. Hassounah, Melt Electrospinning of Thermoplastic Polymers, Aachen, Germany, 2012.
16 H. Zhou, Electrospun fibers from both solution and melt:Processing, structure and property, Conell University, USA, 2006.
17 N. Ogata, S. Yamaguchi, N. Shimada, G. Lu, T. Iwata, K. Nakane, and T. Ogihara, J. Appl. Polym. Sci., 104, 1640 (2007).   DOI   ScienceOn
18 J. Fang, L. Zhang, D. Sutton, X. Wang, and T. Lin, J. Nanomater., 2012, 9 (2012).
19 W. E. Teo, R. Inai, and S. Ramakrishna, Sci. Technol. Adv. Mater., 12, 013002 (2011).   DOI   ScienceOn