• Title/Summary/Keyword: Mehlich 3

Search Result 12, Processing Time 0.032 seconds

Comparison of Multi-element Extraction Methods to Determine Available Phosphate and Exchangeable Cations of Korean Soils (토양의 유효태 인산과 치환성 양이온의 다성분동시추출 분석방법 비교)

  • Kim, Myung-Sook;Yang, Jae Eui;Kim, Yoo-hak;Yoon, Jung-Hui;Zhang, Yong-Seon;Kwak, Han-Gang;Ha, Sang-Keon;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.192-200
    • /
    • 2009
  • Soil testing is one of the best management practices for sustainable agriculture. Recently, as increasing soil testing needs, simplification of soil analytical procedure has been required. To determine recommendable multi-element extractant, the soil testing results of available phosphate and exchangeable cations between the conventional methods (Lancaster and 1M $NH_4OAc) and multi-element extraction methods such as Mehlich III, Modified Morgan and Kelowna methods were compared. There were highly significant correlation between the conventional methods and multi-element extraction methods (Mehlich III, Modified Morgan and Kelowna) for available phosphate and exchangeable K, Ca, Mg and Na. The coefficients of determination ($R^2) between available phosphate extracted by Lancaster method and multielement extraction methods were in the order of Mehlich III ($0.979^{***}$) > Kelowna ($0.977^{***}$) > Modified(Mod.). Morgan ($0.553^{***}$). For exchangeable cations, there were highly significant correlations between 1M $NH_4OAc method and Mehlich III, Mod. Morgan and Kelowna. However, exchangeable K, Ca and Mg by Mehlich III method were more highly correlated with conventional method than other methods. Therefore, Mehlich III extraction method could be recommended as a single extractant for simultaneous measurement using ICP in the analysis of avaliable phosphate and exchangeable cations.

Comparison of Soil Testing Methods for Plant Available Phosphate

  • Kim, Myung Sook;Kwak, Han Kang;Kim, Yoo Hak;Kang, Seong Soo;Gong, Myung Suk;Zhang, Yong Seon;Yoon, Hong Bae;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.153-162
    • /
    • 2013
  • Most test methods for plant available soil phosphate are based on the extraction with a chemical solution. The objective of this study is to evaluate available phosphate of various tests at different soil phosphate levels. Two experiments were conducted as follows: i) Extracting capacities of soil phosphate tests - Mehlich III, Mehlich II, Bray I, Olsen, Kelowna, and Modified Lancaster(Mod. Lancaster) - were compared with that of Lancaster test for the soils collected from 32 paddy and 27 upland fields with various soil chemical properties. ii) Field trials on comparing to phosphate uptake by plant were accomplished by cultivating rice and corn plants in the pots filled with the soils. Available phosphate of Lancaster test was significantly correlated with those of Mehlich III, Mehlich II, Bray I, Olsen, Kelowna, and Mod. Lancaster. In upland soils, available phosphates of all the tests were curvilinearly regressed with phosphate uptake by corn. The determination coefficients ($R^2$) of the regression equation between available phosphate in soils and phosphate uptake by plants were ranged from 0.861 (Mehlich III) to 0.741 (Olsen). In paddy soils, the available phosphate measured by Mehlich III and Lancaster was significantly correlated with phosphate uptake by rice. In conclusion, Lancaster and Mehlich III tests could be used for predicting available phosphate in upland and paddy soils.

Identification of a Proper Phytoavailable Arsenic Extraction Method Associated with Arsenic Concentration in Edible Part of three Crops in Soils Near Abandoned Mining Areas

  • Yoon, Jung-Hwan;Kim, Young-Nam;Lee, Dan-Bi;Kim, Kwon-Rae;Kim, Won-Il;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.497-508
    • /
    • 2017
  • This study aimed to investigate correlations between concentrations of extractable Arsenic (As) with varying chemical solutions (0.1 M $Ca(NO_3)_2$, 0.1 M $(NH_4)2HPO_4$, 0.5 M EDTA, Mehlich 3, and 0.5 M $NaHCO_3$) and those of As in crops, and then to seek the most suitable soil extraction method for predicting the potential of As uptake in crops cultivated in soils contaminated with As. For a mesocosm experiment, pepper (Capsicum annuum L.), soybean (Glycine max L.), and rice (Oryza sativa L.) were cultivated for three months in pots containing soils taken from the arable areas near abandoned mines in Korea. Following the cultivation, soil pH and DOC significantly increased by treatments of lime and lime plus compost, respectively, while insignificant influences in changing total and all extractable As concentrations were found in all soils. Arsenic concentration in edible part of all crops considerably depended on the extractable As concentration in the soils, particularly with Mehlich 3. All extractable As concentrations in the soils of C. annuum and G. max were significantly correlated with As concentration in their edible parts. For O. sativa, the extractable concentrations of Mehlich 3 ($R^2$: 0.18 at p: 0.006) and EDTA ($R^2$: 0.11 at p: 0.036) showed only marked relationships with As concentration in the edible part. These results may indicate that the Mehlich 3 and EDTA are soil extractants to determine phytoavailable As in soil that provide better prediction for As transfer from soil to crop.

Comparison of Color-developing Methods for Phosphorus Analysis in Various Extractants for Soil Phosphorus (몇가지 토양인산(土壤燐酸) 추출용액(抽出溶液)의 인산(燐酸) 발색방법(發色方法) 비교(比較))

  • Yoon, Jung-Hui;Park, Baeg-Gyoon;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.114-119
    • /
    • 1998
  • Intensity and stability of the blue color of phospho-molybdate complex in P analysis are known to be influenced by the matrix, reducing regent and acidity of the extractants. Objective of this research was to compare the efficiency of the color-developing reagents for P concentrations in distilled water and extracts of Lancaster, Mehlich II, and Mehlich III methods. Efficiencies on which to base this study were evaluated by the optimum ranges of P, reproducibility of calibration curve and stability of the developed color. Color-developing reagents employed were ammonium molybdate-1,2,4- aminonaphtholsulfonic acid (ANS), ammonium molybdate-ascorbic acid-bismuth subcarbonate (AB), and ammonium molybdate-ascorbic acid-antimony potassium tartarate (AA). The ANS revealed the lowest sensitivity but the widest ranges for P concentrations in color development. On the other hand, the AA bore the narrowest color-developing ranges and its sensitivity was similar to AB. However, at P concentrations lower than $0.5mg\;L^{-1}$, AA was more sensitive than AB. Based on the data on the ranges of calibration curve, stability of color and reproducibility of analytical data. AA reagent was considered to be suitable for the determination of P in distilled water and AB reagent was practically recommendable for soil P analysis in extracts by Lancaster, Mehlich II, and Mehlich III procedures.

  • PDF

Comparison of Determination Methods for Available-P in Soil of Plastic Film House (시설재배 토양의 유효인산 측정방법 비교)

  • Yang, Won-Seok;Kang, Seong-Soo;Kim, Ki-In;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.163-172
    • /
    • 2006
  • Pot experiments were conducted from 1999 to 2001 to compare the different methods of available phosphorus (P) for estimation of biomass and P uptake by tomato and cucumber grown on different soils (25 soils for tomato and 8 soils for cucumber cultivation) collected from plastic film house of Chungbuk area. Supplementary experiment was conducted to estimate the relationship among several extraction methods of available P such as P adsorption, water extractable-P, Lancaster-P, Olsen-P, Bray No 1 and No 2-P, and Mehlich 1 and 3-P for a total of 71 soils that included 33 soils collected for tomato and cucumber cultivation and 38 soils taken from other sites of plastic film house. All the extraction methods of available phosphorus except P adsorption were mutually positive correlated with r ranging from 0.81 to 0.96 while the correlation coefficient between P adsorption and other methods ranged from -0.57 to -0.80. Phosphorus uptake by tomato plant applied with no fertilizer was significantly correlated with the available P extracted by different methods except P adsorption in all the experiments showing positive correlation coefficients from 0.49 to 0.76 in April, 1999, 0.53 to 0.71 in April, 2000, and 0.59 to 0.68 in October, 2000. Consequently relative amount of P uptake by tomato plant for all the experiments also significantly correlated with available P in soils showing correlation coefficients of r=0.64~0.73 (P<0.0000001) in the order of Mehlich 1-P > Mehlich 3-P > Lancaster-P. For tomato, critical concentrations of available P in soils estimated by Cate and Nelson split method were $1700mg\;kg^{-1}$ for Mehlich 3-P, $1,050mg\;kg^{-1}$ for Mehlich 1-P, and $95mg\;kg^{-1}$ for water extractable P. Also P uptake by cucumber plant was significantly correlated with Olsen-P, water extractable P, and Bray No 2-P with r value of 0.62, 0.59, and 0.51, respectively, in soils of no fertilization.

Soil Neutralizer Selection for Phytostabilzation Using Miscanthus sinensis Anderss. in Heavy Metal Contaminated Soil of Abandoned Metal Mine (폐금속광산 중금속오염토양에서 억새를 이용한 식물안정화공법을 위한 토양개량제 선정)

  • Jung, Mun Ho;Ji, Won Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.517-528
    • /
    • 2020
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Miscanthus sinensis Anderss. for phytostablization in heavy metal contaminated soil of abandoned metal mine. M. sinensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of M. sinensis showed that AMDS 20% was more effective than other amendments for phytostablization, and AMDS 10% showed second effectiveness. Waste lime+oyster, bottom ash and fly ash were also improved compared to control. Mobility of some heavy metal was increased by treatments. Therefore, it is necessary of preparatory investigation of soil condition to select soil amendment to apply on-site phytostablization.

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

Remediation of As-contaminated Soil Using Magnetite and Bottom Ash (비소 오염 토양의 복원을 위한 자철석과 바닥재 활용)

  • Se Jin Oh;Min Woo Kang;Jong Cheol Lee;Hun Ho Lee;Hyun-Seog Roh;Yukwon Jeon;Dong Jin Kim;Sang Soo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.223-229
    • /
    • 2022
  • BACKGROUND: Mining activities, smelter discharges, and sludges are the major sources of heavy metal contamination to soils. The objective of this study was to determine the efficiency of magnetite and bottom ash derived from coal ash in remediating As-contaminated soil. METHODS AND RESULTS: An incubation experiment was conducted for 10 weeks. Magnetite and bottom ash at different rates and ratios were applied to each plastic bottle repacked with 1,000 g of dried As-contaminated soil. After 3-weeks of incubation, the concentrations of available As were measured by using Mehlich-3, SBET, and sequential extraction methods. All of the subjected soil amendments resulted in significant decreases in available As concentration compared to the controls. The addition of magnetite at the highest rate was the best to stabilize As in the soils; however, the values of As concentration varied with the extraction methods. CONCLUSION(S): To ensure the stabilization accuracy of heavy metals in soil, both single and sequential extractions are recommended. The magnetite derived from fly coal ash can also be applicable as a heavy metal stabilizer for the As-contaminated soil.

Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils (여러 안정화제가 산성 및 알칼리 토양에서 중금속 안정화에 미치는 영향)

  • Kim, Min-Suk;Min, Hyungi;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong Sik;Bak, Gwan In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • BACKGROUND: Recent studies using many amendments for heavy metal stabilization in soil were conducted in order to find out new materials. But, the studies accounting for the use of appropriate amendments considering soil pH remain incomplete. The aim of this study was to investigate the effects of initial soil pH on the efficiency of various amendments. METHODS AND RESULTS: Acid soil and alkali soil contaminated with heavy metals were collected from the agricultural soils affected by the abandoned mine sites nearby. Three different types of amendments were selected with hypothesis being different in stabilization mechanisms; organic matter, lime stone and iron, and added with different combination. For determining the changes in the extractable heavy metals, water soluble, Mehlich-3, Toxicity Characteristic Leaching Procedure, Simple Bioavailability Extraction Test method were applied as chemical assessments for metal stabilization. For biological assessments, soil respiration and root elongation of bok choy (Brassica campestris ssp. Chinensis Jusl.) were determined. CONCLUSION: It was revealed that lime stone reduced heavy metal mobility in acid soil by increasing soil pH and iron was good at stabilizing heavy metals by supplying adsorption sites in alkali soil. Organic matter was a good source in terms of supplying nutrients, but it was concerning when accounting for increasing metal availability.

Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil (염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성)

  • Kim, Min-Suk;Min, Hyun-Gi;Lee, Sang-Hwan;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Various types of amendments have been studied for heavy metal stabilization in soil. However, researches on the effect of amendments on alkali soil and their effects on the plants at various edible parts are insufficient. The aim of this study was to evaluate the stabilization efficiency of heavy metals and their transfer into edible parts of food crops. Abandoned mine area was selected and 3 types of amendments (lime stone, LS; steel slag, SS; acid mine drainage sludge, AMDS) was applied with 3% (w/w). in field. After 6 month aging, Chinese cabbage (leafy), bok choy (leafy), garlic (root) and red pepper (fruit) were transplanted and cultivated. For chemical assessment, total concentration and bioavailability using Mehlich-3 solution were determined. For biological assessment, fresh weight and heavy metal uptakes were analyzed. It was revealed that AMDS reduced bioavailability most effectively, resulting in the decrease in heavy metal concentration in edible parts of all crops. When explaining the heavy metal uptake of plants, the bioavailability was more appropriate than the total contents of soil heavy metals. Therefore, bioavailability-based further research and management practices should be carried out continuously for the sustainable environment management, safe crop production, and human health risk reduction.