DOI QR코드

DOI QR Code

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Lee, Sang-Hwan (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Ji, Won-Hyun (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Park, Mi-Jeong (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Jung, Kang-Ho (National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2016.08.16
  • 심사 : 2016.10.25
  • 발행 : 2016.10.31

초록

The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

키워드

참고문헌

  1. Adriano, D.C. 1986. Trace Elements in the Terrestrial Environment. Springer-Verlag, New York. 533p.
  2. Baldaotoni, D., AN. Leone, P. Iovieno. L. Morra, M. Zaccardelli, and A. Flfani. 2010. Total and available soil trace element concentrations in two Mediterranean agricutural systems treated with minucipal waste compost or conventional mineral fertilizers. Chemosphere. 80:1006-1013. https://doi.org/10.1016/j.chemosphere.2010.05.033
  3. Berti, W. R., and S.D. Cunningham. (2000). Phytostabilization of metals. In "Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment" (I. B. Raskin and D. Ensley, Eds.), pp. 71-88. Wiley, New York.
  4. Bolan, N.S., J.H. Park, B. Robinson, R. Naidu, and K.Y. Huh. 2011. Phytostabilization: A Green Approach to Contaminant Containment, p14-204. In: Sparks, D.L., Hallock, S., and Alison, F. (ed.). Advances in Agronomy 112:231p.
  5. Cheng, S.F., and Z.Y. Hseu. 2002. In-situ immobilization of cadmiun and lead by different amendments in to contaminated soils. Water Air Soil Pollut. 140:73-84. https://doi.org/10.1023/A:1020132106541
  6. Cho, J.S., Y.K. Ju, Y.D. Chang, and C.H. Lee. 2010. Screening of useful plants for zinc phytoremediation in upland soils contaminated with heavy metals. Kor. J. Plant Res. Abtr. 2010.5, p114.
  7. Cluis C. 2004. Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotech J. 2:60-67.
  8. Cunningham, S.D., W.R. Berti, and J.W. Huang. 1995. Agronomics remediation of contaminated soils. Trends Bio. Sci. 13:393-397. https://doi.org/10.1016/S0167-7799(00)88987-8
  9. Cunningham, S.D., T.A. Anderson, A.P. Schwab, and F. Hsu. 1996. Phytoremediation of soils contaminated with organic compounds. Adv. Agron. 56:55-114. https://doi.org/10.1016/S0065-2113(08)60179-0
  10. DIN (Deutsches Institue fur Normung). 1995. Soil quality extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag. Berlin, Germany.
  11. Han, S.H., J.O. Hyun, K.J. Lee, and D.H. Cho. 1998. Accumulation of heavy metals(Cd, Cu, Zn, Pb) in five tree species in relation to contamination of soil near two closed-Zinc mining sites. Jour. Korean For. Soc. 87(3):466-474.
  12. Hong, S.H., and K.S. Cho. 2007. Effect of plants rhyzobacteria and physicochemical factor on the phytoremediation of contaminated soi. Kor. J. Micorbiol. Biotechnol. 35:261-271.
  13. Ju, Y.K., H.J. Kwon, J.S. Cho, S.L. Shin, and T.S. Kim. 2011. Growth and heavy metal absorption capacity of Aster koraiensis Nakai according to types of land use. Korean J. Plant Res. 24(1):48-54. https://doi.org/10.7732/kjpr.2011.24.1.048
  14. Jung, M.H., S.H. Lee, Y.S. Kim, and M.J. Park. 2016. Effects of soil neutralizing treatments to soil characteristics and growth of Aster koraiensis in the acid soil of abandoned metal mine. Jour. Korean J. Soil. Sci. Fert. 49(3):287-292. https://doi.org/10.7745/KJSSF.2016.49.3.287
  15. Kim, H.J., J. Yang, J.Y. Lee, and H.J. Sang. 2006. Leaching characteristics of heavy metals from abandoned mines wastes in the Namhan River shore, Korean Soc. of Soil & Ground water Envt, Annual Meetings. p. 201-207.
  16. Kim, K.R., J.S. Park, M.S. Kim, N.I. Koo, S.H. Lee, J.S. Lee, S.C. Kim, J.E. Yang, and J.G. Kim. 2010. Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in upland soil nearby abandoned mining area subsequent metal uptake by red pepper. Korean J. Soil Sci. Fert. 43(6):864-871.
  17. Kim, K.R., R. Naidu, and J.G. Kim. 2010. Utilization of biosolid for enhanced heavy metal removal and biomass production in contaminated soils. Korean J. Soil Sci. Fert. 43(5):436-442.
  18. Kumpiene, J., A. Lagerkvist, and C. Maurice. 2007. Stabilization of As, Cr, Cu, Pb and Zn in soils using amendments-A review. Waste Manage. 28:215-225.
  19. Lee, C.B. 1999. Illustrated flora of Korea. Hyangmooonsa. Seoul. 990p.
  20. Mac L.Q., K.M. Komarc, C. Tuc, W. Zhang, Y. Cai, and E.D. Kenelly. 2001. A fern that hyper accumulates arsenic. Nature 409:579-582. https://doi.org/10.1038/35054664
  21. Mehlich, A. 1984. Mehlich-3 soil test extractant: A modification of Mehlich 2 extractant' Commun. Soil Sci. Plant Anal. 15:1409-1416. https://doi.org/10.1080/00103628409367568
  22. Ministry of environment. 2016. Standard analytical methods for heavy metals in soils. http://www.law.go.kr/DRF/lawService.do?OC=jaa806&target=admrul&ID=2100000036851&type=HTML&mobileYn=.
  23. MIRECO. 2014. YEAR BOOK OF MIRECO STATISTICS (2014). MINE RECLAMATION CORP. Seoul. 342 p.
  24. Moreno, F.N., C.W.N. Anderson, R.B. Stewart, and B.H. Robinson. 2005. Mercury volatilisation and phytoextraction from basemetal mine tailings. Environ. Pollut. 136:341-352. https://doi.org/10.1016/j.envpol.2004.11.020
  25. Nagendran, R., A. Selvam, K. Joseph, and C. Chiemchaisri. 2006. Phytoremediation and rehabilitation of municipal solid waste landfills and dump sites: A brief review, Waste Manage. 26:1357-1369. https://doi.org/10.1016/j.wasman.2006.05.003
  26. Oh, S.J., S.C. Kim, T.H. Kim, K.H. Yeon, J.S. Lee, and J.E. Yang. 2011. Determining kinetic parameters and stabilization efficiency of heavy metals with various chemical amendments. Soil Sci. Fert. 44(6):1063-1070.
  27. Oh, S.J., S.C. Kim, R.Y. Kim, Y.S. Ok, H.S. Yun, S.M. Oh, J.S. Lee, and J.E. Yang. 2012. Change of bioavailability in heavy metal contaminated soil by chemical amendment. Korean J. Soil Sci. Fert. 45(6):973-982. https://doi.org/10.7745/KJSSF.2012.45.6.973
  28. Ok, Y.S., J.E. Lim, and D.H. Moon. 2010. Stabilization of Pb and Cd contaminated soil and soil quality improvement using waste oyster shells. Environ. Geochem. Health. DOI 10.1007/s10653-010-9329-3.
  29. Ok, Y.S., J.G. Kim, J.E. Yang, H.J. Kim, K.Y. Yoo, C.J. Park, and D.Y. Chung. 2004. Phytoremediation of heavy metal contaminated soil using transgenic plants. Korean J. Soil Sci. Fert. 37(6):396-406.
  30. Panayotova, M. and B. Velikov. 2002. Kinetics of heavy metal ions removal by use of natural zeolite. J. Environ. Sci. Health. 37:139-147. https://doi.org/10.1081/ESE-120002578
  31. Park, J.H., P. Panneerselvam, D. Lamb, G. Choppala, and N.S. Bolan. 2011. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185:549-574. https://doi.org/10.1016/j.jhazmat.2010.09.082
  32. Pulford, I. D., and C. Watson. 2003. Phytoremediation of heavy metal-contaminated land by trees-A review. Environ. Int. 29:529-540. https://doi.org/10.1016/S0160-4120(02)00152-6
  33. Rezvani, M., and F. Zaefarian. 2011. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. AJAE 2(4): 114-119.
  34. Ross, S.M. 1994. Toxic Metals in Soil-Plant System. John Wiliy and Sons Ltd. New York. 469p.
  35. Shin, S.G., J.H. Park, J.O. Jeon, T.L. Yun, and J.S. Yun. 2001. Effects of planting density on the growth for Aster koraiensis in the flat bare land. J. Kor. Soc. People Plants Environ. 4:15-20.
  36. Vangronsveld, J., V.F. Assche, and H. Clijsters. 1995. Reclamation of a bare industrial area contaminated by non-ferrous metals:In situ metal immobilization and revegetation. Environ. Pollut. 87:51-59. https://doi.org/10.1016/S0269-7491(99)80007-4
  37. Walworth, J.L., R.G. Gavlak, and M.T. Panciera. 1992. Mehlich 3 extractant for determination of available B, Cu, Fe, Mn, and Zn in cryic Alaskan soils. Can. J. Soil. Sci. 72:517-526. https://doi.org/10.4141/cjss92-043
  38. Yang. J.E. J.G. Skousen. Y.S. Ok. K.Y. Yoo., and H.J. Kim. 2006. Reclamation of abandoned coal min waste in Korea using lime cake by-products. Mine Water Environ. 25: 227-232. https://doi.org/10.1007/s10230-006-0137-z
  39. Yun, E.S., S.H. Park, J.Y. Ko, K.Y. Jung, K.D. Park, J.B. Hwang, and C.Y. Park. 2010. Vertical distribution of the heavy metal in paddy soils of below part at Gundong mine in milyang, Kora. Korean J. Soil Sci. Fert. 43(5):468-473.