Browse > Article
http://dx.doi.org/10.9719/EEG.2020.53.5.517

Soil Neutralizer Selection for Phytostabilzation Using Miscanthus sinensis Anderss. in Heavy Metal Contaminated Soil of Abandoned Metal Mine  

Jung, Mun Ho (Institute of Mine Reclamation Technology)
Ji, Won Hyun (Institute of Mine Reclamation Technology)
Lee, Jin Soo (Institute of Mine Reclamation Technology)
Yang, In Jae (Institute of Mine Reclamation Technology)
Publication Information
Economic and Environmental Geology / v.53, no.5, 2020 , pp. 517-528 More about this Journal
Abstract
The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Miscanthus sinensis Anderss. for phytostablization in heavy metal contaminated soil of abandoned metal mine. M. sinensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of M. sinensis showed that AMDS 20% was more effective than other amendments for phytostablization, and AMDS 10% showed second effectiveness. Waste lime+oyster, bottom ash and fly ash were also improved compared to control. Mobility of some heavy metal was increased by treatments. Therefore, it is necessary of preparatory investigation of soil condition to select soil amendment to apply on-site phytostablization.
Keywords
abandoned metal mine; heavy metal contaminated soil; Miscanthus sinensis Anderss.; phytostablization; soil amendmet;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 De Bartolomeo, A., Poletti, L., Sanchini, G., Sebastiani, B. and Morozzi, G. (2004) Relationship among parameters of lake polluted sediments evaluated by multivariate statistical analysis. Chemosphere, v.55, p.1323-1329.   DOI
2 Greef, J.M., Deuter, M., Jung, C. and Schondelmaier. J. (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev., v.44, p.185-197.   DOI
3 Gomez-Sagasti, M.T., Alkorta, I., Becerril, J.M., Epelde, L., Anza, M. and Garbisu, C. (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut., v.223, p.3249-3262.   DOI
4 Han, S.H., Hyun, J.O., Lee, K.J. and Cho. D.H. (1998) Accumulation of heavy metals(Cd, Cu, Zn, Pb) in five tree species in relation to contamination of soil near two closed-Zinc mining sites. Jour. Korean For. Soc., v.87, p.466-474.
5 Hong, S.H. and Cho. K.S. (2007) Effect of plants rhyzobacteria and physicochemical factor on the phytoremediation of contaminated soi. Kor. J. Micorbiol. Biotechnol., v.35, p.261-271.
6 Ju, Y.K., Kwon, H.J., Cho, J.S., Shin, S.L. and Kim. T.S. (2011) Growth and heavy metal absorption capacity of Miscanthus sinensis var. purpurascens RENDLE according to types of land use. Korean J. Plant Res., v.24, p.48-54.   DOI
7 Jung, M.H., Lee, J.S. and Ji. W.H. (2020) Soil Neutralizer Selection for Rehabilitation in the Acid Soil of Abandoned Metal Mine Using Miscanthus sinensis Anderss. Jour. Korean J. Soil. Sci. Fert., v.53, p.237-246.
8 Panayotova, M. and Velikov, B. (2002) Kinetics of heavy metal ions removal by use of natural zeolite. J. Environ. Sci. Health, v.37, p.139-147.   DOI
9 Park, J.H., Panneerselvam, P., Lamb, D. Choppala, G. and Bolan, N.S. (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater., v.185, p.549-574.   DOI
10 Park, J.Y., Kim, J.Y., Lee, B.T., Kim, K.W. and Lee, J.S. (2010) Enhanced Phytoremediation by Echinochloa crus-galli in Arsenic Contaminated Soil in the Vicinity of the Abandeoned Mine. Econ. Environ. Goel., v.43, p.101-107.
11 Pulford, I.D. and Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees-A review. Environ. Int., v.29, p.529-540.   DOI
12 Rezvani, M. and Zaefarian, F. (2011) Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. AJAE, v.2, p.114-119.
13 Ross, S.M. 1994. Toxic Metals in Soil-Plant System. John Wiliy and Sons Ltd. New York, 469p.
14 Shin, S.G., Park, J.H., Jeon, J.O., Yun, T.L. and Yun, J.S. (2001) Effects of planting density on the growth fo Miscanthus sinensis var. purpurascens RENDLEin the flat bare land. J. Kor. Soc. People Plants Environ., v.4, p.15-20.
15 Kim, K.R., Park, J.S., Kim, M.S., Koo, N.I., Lee, S.H., Lee, J.S., Kim, S.C., Yang, J.E. and J.G. Kim. (2010) Changes in heavy metal phytoavailablity by application of immobilizing agents and soil cover in upland soil nearby abandoned mining area subsequent metla uptake by red pepper. Soil Sci. Fert., v.43, p.864-871.
16 Jung, M.H., Lee, S.H., Ji, W.H., Park. M.J. and Jung, K.H. (2016) Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine. Jour. Korean J. Soil. Sci. Fert., v.49, p.627-634.   DOI
17 Seo, S.W. Moon, S.G., Choi, C.M. and Park. Y.K. (2005) Concentration of Zn, Cu, and Pb in soils and accumulation of Its in Plants around Abandoned Mine Vicinity. Journal of Life Science, v.15, p.826-833.   DOI
18 Song, Y.S., Moon, Y.H., Yu, G.D., Choi, I.S., Cha, Y.L. and Kim, K.S. (2018) Changes of Morphological and Growth Characteristics Collected Miscanthus Germplasm in Korea. Weed Turf. Sci., v.7, p.22-34.
19 Souki, K.S.A., Louvel, B., Douay, F. and Pourrut, B. (2017) Assessment of Miscanthus x giganteus capacity to restore the functionality of metal-contaminated soils: Ex situ experiment. Appl. Soil. Ecol., v.115, p.44-52.   DOI
20 Kim, H.J., Yang, J.E., Lee, J.Y. and Sang. H.J. (2006) Leaching characteristics of heavy metals from abandoned mines wastes in the Namhan River shore. Korean Soc. Soil Ground Water Envt., Annual Meetings, p.201-207.
21 Kim, K.R., Naidu, R. and Kim, J.G. (2010) Utilization of biosolid for enhanced heavy metal removal and biomass production in contaminated soils. Korean J. Soil Sci. Fert., v.43, p.436-442.
22 Krishnamurti, G.S.R. and Naidu, R. (2000) Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Research, v.38, p.991-1004.   DOI
23 Kumpiene, J., Lagerkvist, A. and Maurice, C. (2007) Stabilization of As, Cr, Cu, Pb and Zn in soils using amendments-A review. Waste Manage, v.28, p.215-225.   DOI
24 Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Huisman, W. (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg., v.19, p.209-227.   DOI
25 Mac L.Q., Komarc, K.M., Tuc, C., Zhang, W.n Cai, Y. and Kenelly, E.D. (2001) A fern that hyper accumulates arsenic. Nature, v.409, p.579-582.   DOI
26 Mehlich, A. (1984) Mehlich-3 soil test extractant: A modifrcation of Mehlich 2 extractant' Commun. Soil Sci. Plant Anal., v.15, p.1409-1416.   DOI
27 Wei, Z., Le, Q.V., Peng, W., Yang, Y., Yang, H., Gu, H., L, S.S. and S. C. (2021) A review on phytoremediation of contaminants in air, water and soil. J. Hazardous Materials, v.403, 123658.   DOI
28 Vangronsveld, J., V.F. Assche, and H. Clijsters. 1995. Reclamation of a bare industrial area contaminated by non-ferrous metals: In situ metal immobilization and revegetation. Environ. Pollut., v.87, p.51-59.   DOI
29 Viana, D.G., Pires, F.R., Ferreira, A.D., F, F.B.E., De Carvalho, C.F.M., Bonomo, R. and Martins, L.F. (2021) Effect of planting density of the macrophyte consortium of Typha domingensis and Eleocharis acutangula on ohytoremediation of barium from a flooded contaminated soil. Chemosphere, v.262, 127869.   DOI
30 Walworth, J.L., Gavlak, R.G. and Panciera. M.T. (1992) Mehlich 3 extractant for determination of available B, Cu, Fe, Mn, and Zn in cryic Alaskan soils. Can. J. Soil. Sci., v.72, p.517-526.   DOI
31 Wong, M.H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, v.50, p.775-780.   DOI
32 Zub, H.W. and Brancourt-Hulmel, M. (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sust. Dev., v.30, p.201-214.   DOI
33 Wu, Z.Z., Yang, J.Y., Zhang, Y.X., Wang, C.Q., Guo, S.S. and Yu, Y.Q. (2021) Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremedation. Ecotox. Envrion. Safe, v.207, 111297.
34 Yang. J.E., Skousen. J.G. Ok. Y.S., Yoo, K.Y. and Kim, H.J. (2006) Reclamation of abandeoned coal min waste in Korea using lime cake by-products. Mine Water Environ., v.25, p.227-232.   DOI
35 Yun, E.S., Park, S.H., Ko, J.Y., Jung, K.Y., Park, K.D. Hwang, J.B. and Park, C.Y. (2010) Vertical distribution of the heavy metal in paddy soils of below part at Gundong mine in milyang, Kora. Korean J. Soil Sci. Fert., v.43, p.468-473.
36 Moreno, F.N., Anderson, C.W.N., Stewart, R.B. and Robinson, B.H. (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ. Pollut., v.136, p.341-352.   DOI
37 Ministry of environment. (2016) Standard analytical methods for heavy metals in soils. http://www.law.go.kr/DRF/lawService.do?OC=jaa806&target=admrul&ID=2100000036851&type=HTML&mobileYn=.
38 Miro, M., Estela, J.M. and Cerda, V. (2004) Application of flowing stream techniques to water analysis Part III. Metal ions: Alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis. Talanta, v.63, p.201-223.   DOI
39 MIRECO. (2019) 2018 YEAR BOOK OF MIRECO STATISTICS MINE RECLAMATION CORP. Wonjusi, Kangwon-do, 354p.
40 Nagendran, R., Selvam, A., Joseph, K. and Chiemchaisri, C. (2006) Phytoremediation and rehabilitation of minicipal soild waste landfills and dump sites: A brief review, Waste Manage, v.26, p.1357-1369.   DOI
41 Nsanganwimana, F., Pourrut, B., Mench, M. and Douay, F. (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage, v.14, p.123-134   DOI
42 Oh, S.J., Kim, S.C., Kim, T.H., Yeon, K.H. Lee, J.S. and Yang. J.E. (2011) Determining kinetic parameters and stabilization efficiency of heavy metals with various chemical amendments. Soil Sci. Fert., v.44, p.1063-1070.
43 Oh, S.J., Kim, S.C., Kim, R.Y., Ok, Y.S., Yun, H.S. Oh, S.M. Lee, J.S. and Yang, J.E. (2012) Change of bioavailability in heavy metal contaminated soil by chemical amendment. Soil Sci. Fert., v.45, p.973-982.
44 Cheng, S.F. and Hseu, Z.Y. (2002) In-situ immobilization of cadmiun and lead by different amendments in to contaminated soils. Water Air Soil Pollut., v.140, p.73-84.   DOI
45 Ok, Y.S., Kim, J.G. Yang, J.E., Kim, H.J., Yoo, K.Y., Park, C.J. and Chung, D.Y. (2004) Phytoremediation of heavy metal contaminated soil using transgenic plants. Korean J. Soi. Sci. Fert., v.37, p.396-406.
46 Adriano, D.C. (1986) Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, 533p.
47 Atkinson, C.J. (2009) Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy., v.33, p.752-759.   DOI
48 Baldaotoni, D., Leone, A.N., Iovieno, P., Morra, L., Zaccardelli, M. and Flfani, A. (2010) Total and available soil trace element concentrations in two Mediterranean agricutural systems treated with minucipal waste compost or conventional mineral fertilizers. Chemosphere., v.80, p.1006-1013.   DOI
49 Berti, W. R. and S.D. Cunningham. (2000). Phytostablization of metals. In "Phytostablization of Toxic Metals: Using Plants to Clean Up the Environment" (I. B. Raskin and D. Ensley, Eds.), Wiley, New York, pp.71-88.
50 Bolan, N.S., Park, J.H., Robinson, Naidu, B.R. and Huh, K.Y. (2011) Phytostablization: A Green Approach to Contaminant Containment. Adv. Agron., v.112, p.145-204.   DOI
51 Chens, S. and Stephen. A.R. (2006) MISCANTHUS Andersson. Flora of China., v.22, p.581-583.
52 Cho, J.S., Ju, Y.K., Chang, Y.D. and Lee, C.H. (2010) Screening of useful plants for zinc phytoremideation in upland soils contaminated with heavy metals. Kor. J. Plnat Res. Abtr., v.5, p.114.
53 Cluis C. (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotech. J., v.2, p.60-67.
54 Cunningham, S.D. and Berti, W.R. (1997) Phytoextraction or phystabilization: technical, economic and regulatory considerations of the soil-lead issue. In N. Terry (de.) Proceedings of th 4th international conference on biogeochemistry of trace elements, Berkeley, Califonia, USA.
55 Cunningham, S.D., Berti, W.R. and Huang, J.W. (1995) Agronomics remediation of contaminated soils. Trends Bio. Sci., v.13, p.393-397.   DOI
56 DIN (Deutsches Institue fur Normung). (1995) Soil quality extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag. Berlin, Germany.
57 Cunningham, S.D., Anderson, T.A., Schwab, A.P. and Hsu, F. (1996) Phytoremediation of soils contaminated with organic compounds. Adv. Agron., v.56, p.55-114.   DOI