• Title/Summary/Keyword: Medium-to-high Frequency

Search Result 471, Processing Time 0.044 seconds

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

High-frequency Plant Regeneration from Mature Seed-derived Callus Cultures of Orchardgrass (오차드그래스 성숙종자로부터 캘러스 유도 및 고효율 식물체 재분화)

  • Lee, Sang-Hoon;Lee, Dong-Gi;Kim, Jin-Soo;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.341-346
    • /
    • 2003
  • In an effort to optimize tissue culture conditions for genetic transformation of orchardgrass (Dactylis glomerata L.), an efficient and high-frequency plant regeneration system from seed-derived calli was established. Embryogenic calli induced on MS medium containing 3mg/L 2,4-D and 0.1mg/L BA had significantly improved regeneration ability. Plant regeneration rate was 92% when embryogenic calli were cultured on N6 medium supplemented with 1mg/L 2,4-D and 3mg/L BA. Among three kinds of medium, MS and N6 medium were optimal for embryogenic callus induction and plant regeneration, respectively. Ho difference in callus induction frequency was observed among four cultivars of orchardgrass, however, "Roughrider" cultivar showed higher regenerability with the frequency of 61%. Addition of maltose to the regeneration medium as a carbon source dramatically increased regeneration frequency up to 69%. A short tissue culture period and high-frequency regeneration system would be beneficial for molecular breeding of orchardgrass through genetic transformation.

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

Callus Induction and Plant Regeneration from Mature Embryos in Oat

  • Lee, Byung-Moo;Kim, Kyung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.352-355
    • /
    • 2002
  • Mature embryos of five oat genotypes were cultured to develop an efficient method of callus induction and plant regeneration. Murashige and Skoog(MS) and N6 media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin were used for callus induction. Percentage of callus induction showed significant among the combinations of plant growth regulators. Callus induction showed high efficiency in medium containing 3 mg/$\ell$ of 2,4-D. The high frequency of callus induction was obtained in Gwiri37. For plant regeneration, calli induced from mature embryos were transferred onto MS and N6 media supplemented with combinations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) for 5 weeks. Percentage of plant regeneration showed high in MS medium containing 0.2 mg/$\ell$ of NAA and 1 mg/$\ell$ of BA. The callus initiation medium affected the subsequent plant regeneration. Treatment with 3 mg/$\ell$ of 2,4-D, and 3 mg/$\ell$ of 2,4-D and 3 mg/$\ell$ of kinetin in callus induction media showed high frequency for plant regeneration. Plant regeneration frequency among the genotypes showed significant. Especially, Gwiri37 showed high regeneration frequency. Regenerated shoots were treated with 200, 350 and 500 mg/$\ell$ of indole-3-butyric acid (IBA) transferred onto half-strength MS medium without plant growth regulators. Treatment of shoots with IBA induced root formation rapidly.

Improvement of Regeneration Efficiency from Mature Embryo and Leaf Base Segment in Korean Oat Genotypes

  • Kim Kyung-Hee;Moon Jung-Hun;Lee Sang-Kyu;Lee Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.349-353
    • /
    • 2004
  • Mature embryo and leaf base segment of Korean oat were used as materials in an experiment to check plant regeneration efficiency. MS media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin, and picloram were used for callus induction from mature embryos and leaf base segments. Three mg/l of 2,4­D and 3 mg/l of picloram in callus induction medium showed high frequency for plant regeneration from mature embryos. Leaf base segments were transferred to callus induction medium and incubated at $25^{\circ}C$ in 16/8 hr light/dark cycle for 3 weeks. Callus induction from leaf base segments of Malgwiri showed high efficiency in medium containing 3 mg/l of 2,4-D and 1 mg/l of kinetin $(91.8\%)$. In case of Samhangwiri, the combinations of phytohormones did not show significant difference. Regeneration from leaf base segments showed high frequency in shoot medium containing 1 mg/l of antiauxin, tri-iodobenzoic acid (TIBA) and 1 mg/l of 6-benzyladenine (BA). Calli induced from leaf base segments of Samhangwiri and Malgwiri in media containing 3 mg/l of 2,4-D and 3 mg/l of picloram showed high regeneration frequency. It appears that the callus initiation medium may be an important factor for subsequent plant regeneration.

Micropropagation of Medicinal Woody Eleutherococcus pedunculus via Somatic Embryogenesis

  • Choi, Yong Eui
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.5-9
    • /
    • 2007
  • Zygotic embryos just after harvest of seeds were immature globular to heart stage. Maturation of zygotic embryos rapidly proceed when zygotic embryos together with small excised parts of endosperm were cultured on 1/3-strength MS solid medium with 2% sucrose, and the zygotic embryos were germinated within two months. Embryogenic callus was formed from the excised segments of germinating zygotic embryos of Eleutherococcus pedunclus on Murashige and Skoog (MS) medium with $4.5{\mu}M$ 2,4-D. The embryogenic callus formation occurred at a low frequency (less than 7%) from hypocotyl segments. The embryogenic calli were maintained on the same medium as primary medium. High frequency somatic embryogenesis was obtained after the cells were transferred to medium lacking 2,4-D. Cotyledonary embryos were germinated and converted into plantlets on medium with $20{\mu}M$ $GA_3$. Embryogenic callus and somatic embryos were produced spontaneously on the surfaces of roots and/or hypocotyls of plantlets. The frequency of embryogenic callus formation was 85% in roots and 34% in hypocotyls. Therefore maintain of cell lines performed very easily. Plantlets with developed epicotyls at more than 3 cm acclimatized at high frequency (89%). While plantlets with small epicotyls (less than 1 cm) were acclimatized at low rate (32%). The soil survived plantlets produced new sprouts after over wintering in the field.

  • PDF

Prediction of Vibrational Responses of Automotive Door System Using Energy Flow Analysis in Medium-to-high Frequencies (에너지흐름해석법을 이용한 중고주파수 대역 자동차 도어 진동예측)

  • Park, Young-Ho;Hong, Suk-Yoon;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1097-1102
    • /
    • 2010
  • In this paper, the energy flow analysis(EFA) of the body-in-white door of a real automotive was performed using the energy flow finite element method(EFFEM) to effectively predict the vibrational responses of built-up structures in the medium to high frequency range. To increase the validity of EFA results, the structural hysteresis damping loss factor was measured by the experiment using the concept of statistical energy analysis(SEA). As the excitation frequency increases, the predicted results simulated with EFFEM generally agree with the experimental results.

Development of Noise Analysis Software-'NASPFA' in Medium-to-high Frequency Ranges using Power Flow Boundary Element Method (파워흐름경계요소법을 이용한 중고주파 소음해석 소프트웨어 'NASPFA' 개발)

  • Lee, Ho-Won;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.949-953
    • /
    • 2004
  • In this paper, Power Flow Boundary Element Method(PFBEM) is studied as the numerical method for the vibration and sound predictions of complex structures in medium-to-high frequency ranges. NASPFA, the sound analysis software based on PFBEM, is developed and is used for the vibro-acoustic analysis. And also the developed software is used for the prediction of interior and exterior sound fields of vibrating structures and for the analysis of the multi-domain problems. To verify the accuracy, NASPFA is applied to the prediction of the energy distribution in the simple structures, and its results are compared with exact PFA solutions. And various practical vehicle systems are modeled and the distributions of the acoustical energy density are successfully predicted.

  • PDF

Dual Vector Control Strategy for a Three-Stage Hybrid Cascaded Multilevel Inverter

  • Kadir, Mohamad N. Abdul;Mekhilef, Saad;Ping, Hew Wooi
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-164
    • /
    • 2010
  • This paper presents a voltage control algorithm for a hybrid multilevel inverter based on a staged-perception of the inverter voltage vector diagram. The algorithm is applied to control a three-stage eighteen-level hybrid inverter, which has been designed with a maximum number of symmetrical levels. The inverter has a two-level main stage built using a conventional six-switch inverter and medium- and low- voltage three-level stages constructed using cascaded H-bridge cells. The distinctive feature of the proposed algorithm is its ability to avoid the undesirable high switching frequency for high- and medium- voltage stages despite the fact that the inverter's dc sources voltages are selected to maximize the number of levels by state redundancy elimination. The high- and medium- voltage stages switching algorithms have been developed to assure fundamental switching frequency operation of the high voltage stage and not more than few times this frequency for the medium voltage stage. The low voltage stage is controlled using a SVPWM to achieve the reference voltage vector exactly and to set the order of the dominant harmonics. The inverter has been constructed and the control algorithm has been implemented. Test results show that the proposed algorithm achieves the desired features and all of the major hypotheses have been verified.

Analysis of Medium Voltage Power-Line Channel Characteristics Considering the Skin Effect (표피효과를 고려한 중전압 전력선 채널특성 분석)

  • 김선효;이원태;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.731-738
    • /
    • 2002
  • In this paper, we analyzed a medium voltage power line characteristics considering the skin effect for high speed data transmission. Medium power-line characteristics impedance was obtained by the S-parameter method which is used in high frequency band. Power line channel characteristics was measured using it designed coupler, it is a wide band coupler between medium powe-line and measurement system. Attenuation characteristics along the frequency was decreased linearly when skin effect was considered but attenuation characteristics along the frequency was decreased linearly when skin effect was not considered. Impedance was showed lower and lower in proportional to frequency, and variation was decreased in proportional to frequency.