• Title/Summary/Keyword: Medium-chain-triglyceride (MCT)

Search Result 22, Processing Time 0.021 seconds

Fabrication and Evaluation of Powders Containing Calcium Silicate for Solid Self-emulsifying System of Oil (오일 성분의 고형 자가 유화 시스템을 위한 규산칼슘 함유 분말의 제조 및 평가)

  • Sung Giu, Jin
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.499-504
    • /
    • 2022
  • The objective of this study is to assess the impact of spray drying conditions on medium-chain triglyceride (MCT) loading, solubility, and release of an MCT-loaded solid self-emulsifying system in a water-insoluble oily substance. MCT-loaded solid self-emulsifying systems are prepared by spray drying with SDS and calcium silicate. The effects of inlet temperature (60, 80, or 100℃) and feed solution composition (0, 10, 50, 90, or 100% ethanol) on physicochemical properties of MCT-loaded solid self-emulsifying systems are studied. The inlet temperature significantly affects the water solubility of MCT. Moreover, the feed solution composition significantly affects water solubility, release rate, and MCT loading. The MCT-loaded solid self-emulsifying system obtained at 60℃ using 90% ethanol feed solution shows the best physicochemical properties among the synthesized products and exhibits better water solubility (4.43 ± 0.44 vs. 0 ㎍/mL) and release (94.4 ± 1.6 vs. 32.8 ± 7.4%, 60 min) than a commercial product. Furthermore, the MCT-loaded solid self-emulsifying system shows an excellent emulsion droplet size (approximately 230 nm).

Medium- and long-chain triglyceride propofol reduces the activity of acetyl-coenzyme A carboxylase in hepatic lipid metabolism in HepG2 and Huh7 cells

  • Wang, Li-yuan;Wu, Jing;Gao, Ya-fen;Lin, Duo-mao;Ma, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Medium- and long-chain triglyceride (MCT/LCT) propofol is widely used as an intravenous anesthetic, especially in the intensive care unit. The present study aimed to assess whether MCT/LCT propofol is safe in the hyperlipidemic population for long-term use. Free fatty acids (FFAs) were used to establish high-fat stimulation of HepG2 and Huh7 cells. Subsequently, these cells were treated with propofol at the concentration of 0, 4, or 8 ㎍/ml for 24 and 48 h. The results indicated that the cell viability was notably decreased when the cells were stimulated with 2 mmol/L FFAs and treated with 12 ㎍/ml MCT/LCT propofol. Accordingly, we chose 2 mmol/L FFAs along with 4 and 8 ㎍/ml MCT/LCT propofol for the subsequent experiments. Four and 8 ㎍/ml MCT/LCT propofol inhibited FFA-induced lipid accumulation in the cells and significantly reversed acetyl coenzyme A carboxylase (ACC) activity. In addition, MCT/LCT propofol not only significantly promoted the phosphorylation of AMPK and ACC, but also reversed the FFA-induced decreased phosphorylation of AMPK and ACC. In conclusion, MCT/LCT propofol reverses the negative effects caused by FFAs in HepG2 and Huh7 cells, indicating that MCT/LCT propofol might positively regulate lipid metabolism.

Impact of Intravenous Omega-3-Enriched Lipid Emulsion on Liver Enzyme and Triglyceride Serum Levels of Children Undergoing Gastrointestinal Surgery

  • Hanindita, Meta Herdiana;Widjaja, Nur Aisiyah;Irawan, Roedi;Hidayat, Boerhan;Hariastawa, IGB Adria
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.1
    • /
    • pp.98-104
    • /
    • 2020
  • Purpose: To investigate the impact of omega-3-enriched lipid emulsion (LE) on liver enzyme (aspartate transaminase [AST] and alanine aminotransferase [ALT]) and triglyceride (TG) levels of children undergoing gastrointestinal surgery. Methods: This experimental randomized controlled group pretest-posttest design study included 14 children who underwent gastrointestinal surgery due to duodenal atresia, jejunal atresia, esophageal atresia, and need for parenteral nutrition for a minimum of 3 days at RSUD Dr. Soetomo Surabaya between August 2018 and January 2019. These children were divided into two groups, those who received standard intravenous LE (medium-chain triglyceride [MCT]/long-chain triglyceride [LCT]) and those who received intravenous omega-3-enriched LE. Differences in AST, ALT, and TG levels were measured before surgery and 3 days after the administration of parenteral nutrition. Results: Liver enzyme and TG levels in each group did not differ significantly before versus 3 days after surgery. However, TG levels were significantly lower in the omega-3-enriched intravenous LE group (p=0.041) at 3 days after surgery, and statistically significant difference in changes in TG levels was noted at 3 days after surgery between MCT/LCT intravenous LE group and the omega-3-enriched intravenous LE group (p=0.008). Conclusion: The intravenous omega-3-enriched LE had a better TG-lowering effect than the MCT/LCT intravenous LE in children undergoing gastrointestinal surgery.

Effect of Medium and Long Chain Triglyceride Diet on the Serum Lipids of Rats Fed with Cholesterol (중쇄(中鎖)와 장쇄지방(長鎖脂肪) 식이(食餌)가 Cholesterol급여(給與) 흰쥐의 혈청지질(血淸脂質)에 미치는 영향(影響))

  • Lee, Eun-Sook;Cho, Jeong-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.91-97
    • /
    • 1987
  • Because of its more complete hydrolysis and rapid absorption, MCT is expected its usefulness in the diets of patients with malabsorption syndrom. Also, several authors reported that serum cholesterol level was lower after MCT feedings. In this study, rate of each experimental group were fed for 4weeks with 20% MCT, 20% corn oil, mixed diet of 10% MCT and 10% corn oil, mixed diet of 17% corn oil and 3% shortening. After experimental diet, it was measured to growth rate and serum cholesterol, triglyceride and phospholipid level. The results were as follows; 1. The body weight gain was the lowest in MCT group and others were lower than control group. 2. Serum total cholesterol level was the lowest in corn oil group and others were significantly lower than control group. Free cholesterol level was lower in all experimental groups than control group too. 3. Serum HDL-cholesterol level was significantly higher in all experimental groups than control group. 4. The ratio of VLDL, LDL-Cholesterol to HDL-Cholesterol was significantly lower in all experimental groups than control group. 5. Serum triglyceride level was higher in all experimental groups than control group. Serum phospholipid level was significantly in only mixed diet group of corn oil and shortening than control group. 6. The ratio of total cholesterol to phospholipid was significantly lower in corn oil diet group than control group.

Application of Microencapsulated Isoflavone into Milk

  • Jeon, Byung-Ju;Kim, Nam-Chul;Han, Eun-Mi;Kwak, Hae-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.859-865
    • /
    • 2005
  • This study was designed to develop a microencapsulated, water-soluble isoflavone for application into milk and to examine the hypocholesterolemic effect of such a milk product in a rat diet. The coating material was medium-chain triglyceride (MCT) and the core material was watersoluble isoflavone. The microencapsulation efficiency was 70.2% when the ratio (w/w) of coating material to core material was 15:1. The isoflavone release from the microcapsules was 8% after 3-day storage at $4^{\circ}C$. In in vitro study, 4.0-9.3% of water-soluble isoflavone in simulated gastric fluid was released in the pH range of 2 to 5 after 60 min incubation; however, in simulated intestinal fluid at pH 8, 87.6% of isoflavone was released from the capsules after 40 min incubation time. In sensory analysis, the scores of bitterness, astringency, and off-taste in the encapsulated isoflavone-added milk were slightly, but not significantly, different from those in uncapsulated, isoflavone-added milk. In blood analysis, total cholesterol was significantly decreased in the isoflavone-added group compared with that in the control after 6-week feeding. Therefore, this study confirmed the acceptability of MCT as a coating material in the microencapsulation of water-soluble isoflavone for application into milk, although a slight adverse effect was found in terms of sensory attributes. In addition, blood total cholesterol was lowered in rats which had been fed a cholesterol-reduced and microencapsulated, isoflavoneadded milk for 6 weeks.

Krill-Derived Phosphatidylserine Improves TMT-Induced Memory Impairment in the Rat

  • Shim, Hyun-Soo;Park, Hyun-Jung;Ahn, Yong-Ho;Her, Song;Han, Jeong-Jun;Hahm, Dae-Hyun;Lee, Hye-Jung;Shim, In-Sop
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.207-213
    • /
    • 2012
  • The present study examined the effects of krill-derived phosphatidylserine (Krill-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered vehicle (medium-chain triglyceride: MCT) or Krill-PS (50, 100 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of Krill-PS in TMT-induced amnesic rats was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. The rats with TMT injection showed impaired learning and memory of the tasks and treatment with Krill-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the $2^{nd}$ and $4^{th}$ day compared to that of the MCT group (p<0.05). In the retention test, the Krill-PS+MCT groups showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, Krill-PS 50+MCT group significantly alleviated the loss of acetylcholinergic neurons in the hippocampus and medial septum compared to that of the MCT group. Treatment with Krill-PS significantly increased the CREB positive neurons in the hippocampal CA1 area as compared to that of the MCT group. These results suggest that Krill-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers

  • Kim, Sun-Hyung;Ji, Yeun-Sun;Lee, Eui-Seok;Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Curcumin is a flavonoid found in the rhizome of the turmeric plant (Curcuma longa L.) and has recently attracted interest because it has numerous biological functions and therapeutic properties. In the present study, we attempted to incorporate curcumin into medium-chain triglyceride (MCT) nanoemulsions (0.15 wt% curcumin, 10 wt% MCT oil, and 10 wt% emulsifiers) with various emulsifiers [polyoxyethylene (20) sorbitan monolaurate (Tween-20), sorbitan monooleate (SM), and soy lecithin (SL)]. The physicochemical properties of the nanoemulsions including the Ostwald ripening stability were investigated. The initial droplet size was found to be 89.08 nm for the nanoemulsion with 10 wt% Tween-20 (control), and when Tween-20 was partially replaced with SM and SL, the size decreased: 73.43 nm with 4 wt% SM+6 wt% Tween-20 and 67.68 nm with 4 wt% SL+6 wt% Tween-20 (prepared at 15,000 psi). When the nanoemulsions were stored for 28 days at room temperature, the droplet size increased as the storage time increased. The largest increase was observed for the control nanoemulsion, followed by the 4 wt% SL+6 wt% Tween-20 and 4 wt% SM+6 wt% Tween-20 systems. The Turbiscan dispersion stability results strongly supported the relationship between droplet size and storage time. The time-dependent increase in droplet size was attributed to the Ostwald ripening phenomenon. Thus, the Ostwald ripening stability of curcumin-loaded MCT nanoemulsions with Tween-20 was considerably improved by partially replacing the Tween-20 with SM or SL. In addition, curcumin may have acted as an Ostwald ripening inhibitor.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

Enhancing the Moisturizing Ability of the Skin Softener using Nanoemulsion Based on Phospholipid Liposome

  • Lee, Jinseo;Park, Su In;Heo, Soo Hyeon;Kim, Miok;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.236-242
    • /
    • 2020
  • In this paper, we present the improvement in low moisturizing ability and stability that existing skin softeners have due to the low oil content, by developing skin softener using nanoemulsion of phospholipid liposome, based on the properties of nanoemulsion in cosmetic formulation. In this study, two types of oil; dimethicone (DC 200/6cs) or medium chain triglyceride (MCT), and two kinds of lecithin; unsaturated or saturated were respectively applied to produce nanoemulsion. In the particle size analysis of nanoemulsion, the droplet size of nanoemulsion containing DC200/6cs and unsaturated lecithin was the smallest, and all nanoemulsion showed high stability in the measurement of zeta potential. Therefore, with the smallest particle size and high stability, moisture contents and trans epidermal water loss(TEWL) were measured using the skin softener of DC200/6cs and unsaturated lecithin contained nanoemulsion, and the measurement was compared with the non-oil skin softener and the skin softener with only small amount of oil. The results showed that the moisture content of the skin softener using nanoemulsion increased greatly than other two skin softeners, showing high hydration ability and water retention capacity, and TEWL decreased greatly, therefore preventing the evaporation of moisture from the skin. As a result, the oil content and stability of the skin softener was improved by utilizing nanoemulson based of phospholipid liposome, and it is expected to be used in various ways in cosmetic industry.

A study on the formation and Ostwald ripening stability of nanoemulsion with various emulsifiers (유화제 종류에 따른 nanoemulsion의 형성과 Ostwald ripening에 관한 연구)

  • Park, Eun-Jeong;Lee, Eui-Seok;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.536-545
    • /
    • 2015
  • This study aimed to investigate the effect of various emulsifiers on the formation of nanoemulsions and their stability properties. MCT (medium chain triglyceride) nanoemulsions were prepared (10 wt% oil, 10 wt% emulsifiers, 20 mM bis-tris, pH 7) with emulsifier such as Tween 20 (Polyoxyethylene(20) sorbitan monolaurate), Almax 3800 (Sorbitan monooleate), soy lecithin, and SSL (sodium stearoyl lactylate) and changes in fat globule size with respect to storage period and stability properties by Turbiscan were investigated. In case of control nanoemulsion with 10 wt% Tween 20, the initial fat globule size was 89.0 nm and 113.4 nm after 28 day of storage and this large increase (ca. 24 nm) was thought to be caused by Ostwald ripening. When Tween 20 was partially replaced with Almax 3800, lecithin and SSL in nanoemulsions, their physicochemical properties (i.e., fat globule size and stability) were changed accordingly. In general, the intial fat globule size was decreased with increasing the concentration of the emulsifiers and the stability against Ostwald ripening increased. The most stable nanoemulsions against Ostwald ripening could be prepared with emulsifiers of Tween 20 and Almax 3800 or lecithin in the ratio of 6:4 (wt%), which was verified with Ostwald ripening rate (${\omega}$). In addition, the emulsion stability by Turbiscan was observed to be consistent with results of changes in fat globule size with storage period.