• Title/Summary/Keyword: Medium strength

Search Result 863, Processing Time 0.024 seconds

Effect of Alloying Elements and Heat Treatment on the Microstructures and Mechanical Properties of Medium Carbon High Manganese Steels (중탄소 고망간강의 합금원소와 열처리 조건이 미세조직과 기계적 특성에 미치는 영향)

  • Lee, D.S.;Park, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.338-343
    • /
    • 2010
  • Mechanical properties and microstructures of medium carbon high manganese steels were investigated in terms of alloying elements such as Mn, C contents, and heat treatment condition. Austenite volume fraction was increased with increasing Mn content, leading to hardness decrease in the range of Mn content of above 10% after quenching and tempering. Such results are also supported by microstructural analysis and X-ray diffraction in that the increase in mangaese content results in the increase in austenite fraction. Studies on tempering condition indicated that not only hardness and tensile strength but also charpy impact values were reduced as tempering temperature were raised in the range of $250^{\circ}C$ to $600^{\circ}C$. It was also observed that fracture mode was changed from dimple to intergranular fracture. Such results are thought to be due to very fine carbide precipitation or impurity segreagation at grain boundaries as tempering temperature goes up. Heat treatment of Fe-5Mn-2Si-1Al-0.4C can be optimized by austenitizing at $850^{\circ}C$, air cooling and tempering at $250^{\circ}C$, resulting in 1950 MPa in Tensile strength, 17% in elongation and 23.3 $J/cm^2$ in charpy impact energy with high work hardening characteristics.

Geomechanical analysis of elastic parameters of the solid core of the Earth

  • Guliyev, Hatam H.
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • It follows from the basic principles of mechanics of deformable solids relating to the strength, stability and propagation of elastic waves that the Earth's inner core cannot exist in the form of a spherical structure in the assumed thermobaric conditions and calculation values of physico-mechanical parameters. Pressure level reaches a value that is significantly greater than the theoretical limit of medium strength in the model approximations at the surface of the sphere of the inner core. On the other hand, equilibrium state of the sphere is unstable on the geometric forming at much lower loads under the influence of the "dead" surface loads. In case of the action of "follower" loads, the assumed pressure value on the surface of the sphere is comparable with the value of the critical load of "internal" instability. In these cases, due to the instability of the equilibrium state, propagation of homogeneous deformations becomes uneven in the sphere. Moreover, the elastic waves with actual velocity cannot propagate in such conditions in solid medium. Violation of these fundamental conditions of mechanics required in determining the physical and mechanical properties of the medium should be taken into account in the integrated interpretations of seismic and laboratory (experimental) data. In this case, application of the linear theory of elasticity and elastic waves does not ensure the reliability of results on the structure and composition of the Earth's core despite compliance with the required integral conditions on the mass, moment of inertia and natural oscillations of the Earth.

Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion

  • Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Hyoung Seop Kim;Jae Wung Bae;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.

Effects of Plant Growth Regulators, Medium Salt Strength and Nitrogen Ratio on Cell Culture of Gymmema sylvestre (식물생장조절물질, 무기물 농도 및 질소원 비율이 Gymmma sylvestre 세포 배양에 미치는 영향)

  • Lee, Eun-Jung;Han, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 2006
  • This study was carried out to investigate the effects of plant growth regulators, medium salt strength and nitrogen ratio on cell culture of Gymnema sylvestre. Cell growth was inhibited by 2,4-D higher than 1.0 mg L$^{-1}$, but not by kinetin lower than 0.5 mg L$^{-1}$. Maximal cell growth was obtained at 1.0 mg L$^{-1}$ 2,4-D and 0.1 mg L$^{-1}$ kinetin. Cell growth was greatest at 1x MS medium but high strength of MS medium inhibited cell growth due to low water potential in the medium. In $NH_4^+:NO_3^-$ ratio of 0:60 (i.e. 0.0 mM $^NH_4^+$ and 60.0 mM $NO_3^-$), cells growth was highest but cells were smaller and whiter compared with those in other $NH_4^+:NO_3^-$ ratio. Reduced cell growth was observed with continuous culture. These results suggested that optimal cell culture of G. sylvestre could be achieved with 1x MS medium with 20:40 ratio of $NH_4^+:NO_3^-$ supplemented with 1.0 mg L$^{-1}$ 2,4-D and 0.1 mg L$^{-1}$ kinetin.

Soil Acclimatization of Calanthe discolor through Multiple Shoot Formation from Tissue Culture (새우난초(Calanthe discolor)의 조직배양으로부터 다신초형성을 통한 토양순화)

  • Bae, Kee-Hwa;Yoon, Eui-Soo;Yun, Pil-Yong;Choi, Yong-Eui
    • Korean Journal of Plant Resources
    • /
    • v.23 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • This experiment was conducted to establish the micropropagation of Calanthe discolor through multiple shoot formation from the culture of leaf, corm and root explants. Frequency of adventitious shoot formation from leaf explants was higher than those of corms and root explants. Frequency of adventitious shoot formation on medium with various concentrations of BA (0. 1.0, 3.0, and 5.0 mg/L) and NAA (0, 0.1, 0.5, and 1.0 mg/L) was tested. The maximun induction of adventitious shoot was obtained on half strength Murashige and Skoog (MS) medium supplemented with 3.0 mg/L BA and 1.0 mg/L NAA after 6 weeks of culture. Multiple shoots were transferred onto half strength MS medium with various concentrations of GA3 (0, 0.1, 0.5, 1.0, 3.0, and 5.0 mg/L). The number and length of multiple shoots on medium were highest on medium with 3.0 mg/L GA3. All the adventitious shoot grew well and rooted on half strength MS medium with 3.0 mg/L NAA. The plantlets were acclimatized up to 100% on sand with TKS-II or pearlite with TKS-II.

Selective Synthesis of Butene-1 Through Double-bond Migration of Butene-2 over η-Alumina Catalysts

  • Jeon, Jong-Ki;Kim, Do Heui;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2669-2672
    • /
    • 2014
  • Double bond migration of butene-2 to butene-1 over ${\eta}$-alumina was investigated. The effects of calcination temperature on catalytic properties were analyzed by applying BET surface area, XRD, $NH_3$-TPD, and FT-IR of adsorbed pyridine techniques. The highest activity of the ${\eta}$-alumina catalyst calcined at $600^{\circ}C$ could be attributed not only to the highest amount of weak and medium strength acid sites, but also to the highest ratio of medium to weak strength Lewis acid sites.

High Frequency Electroporation-transformation of Coryneform Bacteria Grown in the Medium with Penicillin-G (Penicillin-G 첨가 배지에서 배양한 코리네형 세균의 전기장 충격법에 의한 고효율 형질전환)

  • 노갑수;김성준
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.223-230
    • /
    • 1991
  • Using the shuttle vector pECCGl between Escherichia coli and Corynebacterium glutamicum and C. glutamicum strain JS231 grown in the medium supplemented with penicillin-G, which inhibits the formation of cross-links in the peptidoglycan of bacterial cell wall, various parameters involved in electroporation system including resistance, electric field strength, capacitance, DNA concentration, and cell density were investigated independently and optimized for the high efficiency transformation of coryneform bacteria. Using cells grown with 0.3U/ml of penicillin-G and harvested at A600 of 0.7-0.8, transformation efficiencies of 107-l08 transformants/$\mu\textrm{g}$ of DNA with Corynebcctertum glutamicum strain JS231 and wild type ATCC13032 were achieved under conditions of 12.5kV/cm of electric field strength, 400 ohms of resistance, $25\mu$F of capacitance, 3$\times$108 cells per transformation(1.2$\times$1010 cells/ml) and 100ng of plasmid DNA per transformation.

  • PDF

Pot Test and Preparation of PVA/Chitosan Blending Film Accoding to Molecular Weight of Chitosan (키토산의 분자량에 따른 PVA/Chitosan 블랜드필름의 제조와 토양분해 실험)

  • 이기창;황성규;김종완;정덕채;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.48-53
    • /
    • 1998
  • Chitin is known as biodegradable natural polymer. But, in spite of various application of chitin from waste marine sources, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. We made various viscosity of chitosan from chitin by change of Mima's method through the deacetylation which is various condition of NaOH concentration, reaction time and temperature. Also, Polyvinyl alcohol/chitosan blend films were prepared by different solution blends containing the ratio of 5, 10, 15 and 20% chitosan and low, medium, high molecular weight of chitosan to find a more useful biodegradable polymer. Thermal and mechanical properties of PVA/chitosan blend films such as DSC, impact strength, tensile strength and morphological changes by SEM were determined. The 10-15% PVA/chitosan(low, medium) blend films were similar to PVA. Also, PVA/chitosan blend films at the laboratory soil test(Pot Test) were completely degraded in month with four kinds of soils by microorganisms.

  • PDF

Effects of Alloying Elements and Pro-eutectoid Ferrite on Mechanicl Properties in Medium Carbon Steels (중탄소강에서 합금원소 및 초석 페라이트가 기계적성질에 미치는 영향)

  • 심혜정;송형락;남원종
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.350-358
    • /
    • 2004
  • The effects of alloying elements on microstructural features and mechanical properties in 0.55%C medium carbon steels were investigated. The samples were austenitized at 105$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. The addition of Cr resulted in the decrease of the volume fraction of pro-eutectoid ferrite and interlamellar spacing in pearlite and the increase of strength. However, the addition of B caused the increase of the volume fraction of pro-eutectoid ferrite. Reduction of area and Charpy impact values were influenced by the combined effect of microstructural features, such as the volume fraction of pro-eutectoid ferrite, interlamellar spacing and the thickness of lamellar cementite in pearlite.

Manufacture and Its Properties of MDF Using Paper Sludge and ONP (제지슬러지와 신문고지를 이용한 MDF의 제조 및 물성)

  • Kim, Bong-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.50-55
    • /
    • 1997
  • This study was carried out to utilize old newspaper(ONP) and paper sludge more effectively, and also to elucidate the influences of pressing conditions on the medium density fiberboard(MDF) properties. MDFs were made from ONP and low grade of paper sludge by wet process with change of pressing time, temperature and pressure. MDFs of ONP were more affected by pressing conditions, especially pressing pressure, but temperature and pressing time were also important. According to mixing paper sludge to ONP tensile and bending strength of MDF were decreased, but density and dimensional stability were improved. These results indicated that some physical properties of MDF can be improved by paper sludge and it is possible to use it in MDF.

  • PDF