• 제목/요약/키워드: Medical phantom

검색결과 1,081건 처리시간 0.035초

PET/CT에서 Pitch와 Rotation Time의 변화를 이용한 능동적인 프로토콜 사용에 대한 연구 (A Study on the Use of Active Protocol Using the Change of Pitch and Rotation Time in PET/CT)

  • 장의순;곽인석;박선명;최춘기;이혁;김수영;최성욱
    • 핵의학기술
    • /
    • 제17권2호
    • /
    • pp.67-71
    • /
    • 2013
  • PET/CT검사에서 CT촬영조건의 변화는 영상의 화질 및 환자가 받는 피폭선량에 영향을 미친다. 본 연구는 CT 매개 변수 중 Pitch와 X-선관 회전시간 변화에 따른 선량대비 CT 영상의 질과 이로 인해 PET상에서 SUV에 미치는 영향을 비교 평가하고자 하였다. Discovery STe PET/CT 장비를 이용하여 영상을 획득하였다. QA Phantom과 AAPM Phantom을 이용한 CT 영상 획득 시 Pitch는 0.562, 0.938, 1.375, 1.75:1로 4단계, X-선관 회전시간은 0.5에서 1.0까지 0.1초씩 증가시켜 6단계로 나누어 총 24개 조합을 적용한 영상을 각각 획득하였다. PET 영상은 $^{18}F-FDG$ 5.3 kBq/mL가 채워진 1994 NEMA PET Phantom을 이용하여 프레임당 2분 30초의 방출영상을 획득하였다. 각 조합의 CT 영상에 관심영역을 설정하고 CT number의 표준편차를 측정하였다. 동일한 영상에서 DLP변화에 따른 영상잡음의 예측값을 계산하여 예측값 대비 실측값의 비율을 구해 선량대비 영상잡음 효과를 비교하는 척도로 사용하였다. AAPM Phantom 영상에서 1.0 mm까지 식별이 가능한 지 확인하였다. NEMA PET Phantom의 방출영상에 관심영 역을 설정하고 SUV를 비교 평가하였다. Pitch가 0.562, 0.938, 1.375, 1.75:1로 변화할 때 영상잡음 효과는 QA Phantom에서 1.00, 1.03, 1.01, 0.96, AAPM Phantom에서 1.00, 1.04, 1.02, 0.97로 측정되었다. 회전시간의 증가에 따른 경우 QA Phantom에서 0.99, 1.02, 1.00, 1.00, 0.99, 0.99이었고, AAPM Phantom에서 1.01, 1.01, 0.99, 1.01, 1.01, 1.01로 SPSS Ver. 18을 이용하여 상관관계를 분석한 결과 피어슨 상관계수는 -0.059로 나타났다. 공간분해능에 대한 평가는 24개의 조합 모두에서 1.0 mm까지 육안으로 구별이 가능하였다. SUV의 경우 평균 SUV는 모든 조합에서 1.1로 모두 동일한 값을 나타내었다. Pitch 변화에 따른 CT 영상 평가에서 1.75:1을 적용 시 선량대비 가장 적은 영상잡음 효과를 보이며 공간분해능과 SUV에는 영향을 미치지 않는다. 그러나 회전시간 변화가 영상에 미치는 영향에는 유의한 차이가 없음을 알 수 있다. 결과에서와 같이 각 장비에 따른 선량대비 영상잡음이 적은 Pitch를 사용하고 환자의 체격에 따른 적절한 X-선관 회전시간을 이용한다면 환자의 피폭선량을 줄이면서 최적의 화질을 얻을 수 있는 프로토콜을 구성하는데 도움이 될 것이라 사료된다.

  • PDF

Region of Interest Heterogeneity Assessment for Image using Texture Analysis

  • Park, Yong Sung;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.17-21
    • /
    • 2016
  • Heterogeneity assessment of tumor in oncology is important for diagnosis of cancer and therapy. The aim of this study was performed assess heterogeneity tumor region in PET image using texture analysis. For assessment of heterogeneity tumor in PET image, we inserted sphere phantom in torso phantom. Cu-64 labeled radioisotope was administrated by 156.84 MBq in torso phantom. PET/CT image was acquired by PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI). The texture analysis of PET images was calculated using occurrence probability of gray level co-occurrence matrix. Energy and entropy is one of results of texture analysis. We performed the texture analysis in tumor, liver, and background. Assessment textural features of region-of-interest (ROI) in torso phantom used in-house software. We calculated the textural features of torso phantom in PET image using texture analysis. Calculated entropy in tumor, liver, and background were 5.322, 7.639, and 7.818. The further study will perform assessment of heterogeneity using clinical tumor PET image.

Characteristics of Magnetic Resonance-Based Attenuation Correction Map on Phantom Study in Positron Emission Tomography/Magnetic Resonance Imaging System

  • Hong, Cheolpyo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.189-193
    • /
    • 2020
  • An MR-based attenuation correction (MRAC) map plays an important role in quantitative positron emission tomography (PET) image evaluation in PET/magnetic resonance imaging (MRI) systems. However, the MRAC map is affected by the magnetic field inhomogeneity of MRIs. This study aims to evaluate the characteristics of MRAC maps of physical phantoms on PET/MRI images. Phantom measurements were performed using the Siemens Biograph mMR. The modular type physical phantoms that provide assembly versatility for phantom construction were scanned in a four-channel Body Matrix coil. The MRAC map was generated using the two-point Dixon-based segmentation method for whole-body imaging. The modular phantoms were scanned in compact and non-compact assembly configurations. In addition, the phantoms were scanned repeatedly to generate MRAC maps. The acquired MRAC maps show differently assigned values for void areas. An incorrect assignment of a void area was shown on a locally compact space between phantoms. The assigned MRAC values were distorted using a wide field-of-view (FOV). The MRAC values also differed after repeated scans. However, the erroneous MRAC values appeared outside of phantom, except for a large FOV. The MRAC map of the phantom was affected by phantom configuration and the number of scans. A quantitative study using a phantom in a PET/MRI system should be performed after evaluation of the MRAC map characteristics.

Onco Flash에서 매개변수 변화에 따른 영상의 질 평가 (Evaluation of Image Quality by Parameter Change in Onco Flash)

  • 차은선;노익상;김기;최춘기;석재동
    • 핵의학기술
    • /
    • 제13권1호
    • /
    • pp.30-34
    • /
    • 2009
  • 목적 : 현재 신속한 검사 및 환자의 대기 시간 단축에 따른 제한적인 영향을 가지고 있는 whole body bone scan의 단점을 보완하기 위한 다양한 프로그램들이 개발되어 사용되고 있다. 본 연구는 스캔속도와 알파 값에 따른 FWHM를 이용하고 영상의 육안평가를 통해서 우수한 영상의 질을 얻을 수 있는 매개변수로 임상의 유용성을 얻고자 한다. 실험재료 및 방법 : Siemens (e.cam)사의 감마카메라에서 spatial resolution phantom과 four quadrant bar phantom을 이용하였다. spatial resolution phantom을 가지고 scatter와 non scatter로 Onco Flash를 적용해서 스캔속도 15, 20, 25, 30, 35, 40 cm/min으로 FWHM을 비교하였다. 또한 Onco Flash의 알파값 (0~100%)에서 10%씩 증가하여 스캔속도 30 cm/min 기준으로 계수율과 bar phantom 영상을 얻어 육안적 평가를 하였다. 결과 : Onco Flash를 적용한 scatter에서 스캔속도에 따라 FWHM은 9.37, 9.40, 9.28, 9.30, 9.31, 9.53 mm이고, non scatter에서는 스캔속도에 따라 FWHM은 8.42, 8.32, 8.2, 8.25, 8.35, 8.52 mm이었다. 알파 값은 10%씩 증가할수록 계수율도 증가하고, 육안적 평가는 40% 이상에서 인공물이 나타나기 시작하기 때문에 알파 값은 30% 이하에서 적합하였다. 따라서 Onco Flash를 사용한 스캔속도가 25~35 cm/min에서 알파값 30% 적용 시 FWHM이 평균 9.3 mm로서 15~40 cm/min를 벗어나는 값 보다 공간분해능이 향상되었다. 결론 : Whole body bone scan의 영상을 향상시킬 수 있는 적정 매개변수를 알 수 있었으며 검사 시간을 단축하면서 영상의 질을 향상 할 수 있도록 매개변수들을 적용해 보아 임상적용에 적합한 범위를 얻어 검사자에게 유용한 지표가 될 것이라 사료된다.

  • PDF

PET/CT 영상의 부분체적효과와 장기의 움직임으로 인해 감소된 SUV의 보정을 위한 회복계수의 비교 (Comparison of Recovery Coefficients for Correction of Reduced SUV by Partial Volume Effect and Organ Movements in PET/CT Images)

  • 김영재;박훈희;이주영;소영;이정우
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권3호
    • /
    • pp.241-248
    • /
    • 2022
  • In this study, a recovery coefficient (RC) calculation was conducted that can correct the underestimation of the standardized uptake value (SUV) due to the partial volume effect (PVE) through phantom measurements and formulas. The experiment was conducted using a dynamic phantom capable of implement cranio-caudal movement at a respiratory rate of 15 times per minute along with the measured phantom experiment of the stopped state, and the RC of the moving state is calculated and compared. Ingenuity TF (Philips Healthcare, Netherland) was used as a positron emission tomography/computed tomography (PET/CT) device. PET-CT Phantom (Biodex Medical System, USA) was used as a phantom for measurement. A phantom image in a stationary state was acquired, and a moving phantom image was acquired using the AZ-733V Respiratory Phantom (Anzai Medical Co, Japan) capable of breathing movement in the cranio-caudal direction under the same acquisition parameters. For RC calculation, the sphere maximum radioactivity concentration and the background mean radioactivity concentration of the acquired images were measured, and the initially determined sphere and background radioactivity concentrations were calculated. The calculated RC was 0.08 to 0.72. The size of sphere smaller, it was confirmed that the RC reduced. And the RC in the moving state reduced than in the stationary state. As a result of this study, the change of the RC was confirmed according to the size of spheres and the phantom moving. Using the RC derived by implement movement of breathing with the respiratory phantom, it is possible to considering correction of underestimated SUV by the partial volume effect of PET images and the patient movements.

Flangeless Esser PET Phantom 영상 자동 분석 프로그램의 유용성 평가 (Usefulness Assessment of Automatic Analysis Program for Flangeless Esser PET Phantom Images)

  • 남궁창경;남기표;김경식;김정선;임기천;신상기;조시만;동경래
    • 핵의학기술
    • /
    • 제13권1호
    • /
    • pp.63-66
    • /
    • 2009
  • Purpose: ACR (American College of Radiology) offers variable parameters to PET/CT quality control by using ACR Phantom. ACR Phantom was made to evaluate parameters which are uniformity, attenuation, scatter, contrast and resolution. Manual analysis method wasn't good for the use of QC because values of parameter were changed as it may user and it takes long time to analysis. Ki-Chun Lim, a nuclear scientist in AMC, developed program that automatically analysis values of parameter by using ACR Phantom to overcome above problems. In this study, we evaluated automatic analysis program's usability, through the comparing SUV of each method, reproducibility of SUV when repeated analysis and the time required. Materials and Methods: Using Flangeless Esser PET Phantom, the ideal ratio of 4 : 1 hot cylinder and BKG but it actually showed a ratio of 3.89 to 1 hot cylinder and BKG. SIEMENS Biograph True Point 40 was used in this study. We obtained images using ACR phantom at Fusion WB PET Scan condition (2 min/bed) and 120 kV, 100 mAs CT condition. Using True X method, 3 iterations, 14 subsets, Gaussian filter, FWHM 4 mm and Zoom Factor 1.0, $168{\times}168$ image size. We obtained Max. & Min. SUV and SUV Mean values at Cylinder (8, 12, 16, 25 mm, Air, Bone, Water, BKG) by automatic program and obtained SUV by manual method. After that, we compared manual and automatic method. we estimate the time required from opened the image data to final work sheet was completed. Results: Automatic program always showed same result and same the time required. At 8, 12, 16 and 25 m cylinder, manual method showed 6.69, 3.46, 2.59, 1.24 CV values. The larger cylinder size became, the smaller CV became. In manual method, bone, air, water's CV were over 9.9 except BKG (2.32). Obtained CV of Mean SUV showed BKG was low (0.85) and bone was high (7.52). The time required was 45 second, 882 second respectably. Conclusions: As a result of difference automatic method and manual method, automatic method showed always same result, manual method showed that the smaller hot cylinders became, the lager CV became. Hot cylinders mean region size, the smaller hot cylinder size becomes we had some trouble in doing ROI poison setting. And it means increase in variation of SUV. The Study showed the time required of automatic method was shorten then manual method.

  • PDF

3D 프린팅을 활용한 일반 X선 촬영 실습용 인체 팬텀 제작 (Making Human Phantom for X-ray Practice with 3D Printing)

  • 최우전;김동현
    • 한국방사선학회논문지
    • /
    • 제11권5호
    • /
    • pp.371-377
    • /
    • 2017
  • 일반 X선 촬영 실습용 팬텀은 방사선학과에 없어서는 안 되는 중요한 교재나 기존의 시판되는 팬텀은 고가의 수입품이기에 다양한 종류의 팬텀을 갖추는 것이 어렵다. 3D 프린팅 기술을 활용해 일반 X선 촬영 실습용 팬텀을 더욱 저렴하고 간편하게 제작해 보고자 한다. CT 영상 데이터를 기반으로 제작한 골격 모형을 FDM(Fused Deposition Modeling) 방식의 3D printer를 이용해 출력한 골격 모형을 일반 X선 촬영 실습용 팬텀으로써 사용해 보고자 한다. 3D slicer 4.7.0 프로그램을 이용해 CT DICOM 영상 데이터를 STL 파일로 변환하고 G-code 변환 과정을 거쳐 3D 프린터로 출력하여 골격 모형을 제작한다. 완성된 팬텀을 X선 촬영, CT 촬영하여 실제 의료 영상, 시판되는 팬텀과 비교해 본 결과 실제 의료영상과 골 밀도 등의 세부적인 차이가 존재하였으나 실습용 팬텀으로써 활용할 수 있다고 판단되었다. 저가화되어 보급된 3D 프린터와 연구용으로 무료 배포된 3D slicer 프로그램을 활용하여 저렴하면서도 일반 X선 촬영 실습에 사용하는 것이 가능한 팬텀을 제작할 수 있었다. 앞으로의 3D 프린팅 기술의 다양화와 연구에 따라 보건 교육, 의료 서비스 등 여러 분야에 적용하는 것이 가능할 것이다.

전산화단층촬영 검사 시 Gantry Aperture 내의 선량분포와 영상의 질 (Dose Distribution and Image Quality in the Gantry Aperture for CT Examinations)

  • 조평곤;김유현;최종학;이기열;김형철;김장섭;신동철;이성현;이준협;신귀순
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제32권4호
    • /
    • pp.453-460
    • /
    • 2009
  • 슬라이스 두께(slice thickness)와 선속시준(beam collimation, BC)의 변화에 따른 CT gantry aperture 내의 선량 분포와 영상의 질을 알아보고자 하였다. CT장치로는 64-slice MDCT 스캐너(Brilliance 64, Philips, Cleveland, USA)를 사용하였다. 피사체가 없는 경우(air scan)의 선량측정을 위해 CT용 전리함을 gantry aperture내의 회전중심점(isocenter)과 12시, 3시, 6시, 9시 방향에서 회전중심점으로부터 5 cm 간격으로 30 cm까지 BC를 변화시키면서 각각 측정 하였다. 또한 5개의 구멍(팬텀의 중심과 12시, 3시, 6시, 9시 방향)으로 구성된 CT head and body dose phantom을 gantry aperture 내에 위치시키고 각 지점에서 선량을 측정하였다. Gantry aperture 내 피사체의 위치변화에 대한 영상의 노이즈를 비교하기 위해서 AAPM CT용 팬텀의 물통을 회전중심점과 12시 방향으로 5 cm와 10 cm 이동시킨 후 BC를 변화시키면서 스캔한 후 팬텀의 중심과 12시, 3시, 6시, 9시 방향의 지점에서 노이즈를 측정하였다. 이 중에서 몇 군데의 위치는 영상 영역에서 벗어나서 측정 할 수가 없었다. 이때 노이즈 측정을 위해서 영상재구성의 슬라이스 두께는 5 mm로 하였다. 측정한 결과 다음과 같은 결론을 얻었다: 첫째, CTDIw는 회전중심점으로부터 멀어질수록, BC가 넓어질수록 감소하였다. 둘째, BC의 넓이가 비슷한 경우의 CTDIw는 거의 유사한 값을 보였다. 즉, CTDIw는 검출기 배열의 수나 화소의 크기 보다는 전체적인 BC의 넓이에 의존하고 있음을 알 수 있었다. 셋째, air scan과 phantom scan 경우 모두에서 CTDIw는 BC가 증가될수록 감소하였다. 그러나 air scan의 경우보다 head phantom scan 시 약 30%, body phantom scan 시 약 52% 정도 CTDIw의 값이 감소하였다. 넷째, BC와 팬텀의 위치 변화에 따른 노이즈 값은 $2{\times}0.5\;mm$의 BC을 제외하고는 head phantom scan한 경우 3.9~5.9, body phantom scan한 경우 5.3~7.4로 나타나, BC와 팬텀의 위치변화에 따라서 큰 차이가 없었다. 따라서 피사체의 위치가 gantry aperture 내 SFOV(scan field of view)에 포함될 경우 회전중심점에 정확하게 위치시키지 않아도 영상의 질에는 많은 영향을 미치지 않는다는 것을 알 수 있었다.

  • PDF

3D 프린팅 기법을 통한 전립샘암 환자의 내부장기 팬텀 제작 및 생체내선량측정(In-vivo dosimetry)에 대한 고찰 (A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient)

  • 서정남;나종억;배선명;정동민;윤인하;배재범;곽정원;백금문
    • 대한방사선치료학회지
    • /
    • 제27권1호
    • /
    • pp.53-60
    • /
    • 2015
  • 목 적 : 본 연구는 3D 프린터를 이용하여 전립샘부위 팬텀을 제작하고 생체내선량측정(In-vivo dosimetry)을 통해 그 유용성을 평가하고자 한다. 대상 및 방법 : 전립샘암 환자의 3차원 치료체적을 바탕으로 3D 프린터(3D EDISON+, Lokit, KOREA)를 이용하여 전립샘과 직장의 체적을 동일하게 모사한 팬텀을 제작하고, 컴퓨터단층촬영(Lightspeed CT, GE, USA)을 통해 팬텀영상을 획득하였다. 전립샘암 환자의 체적과 팬텀의 체적을 비교 한 후, 전산화치료계획시스템(Eclipse version 10.0, Varian, USA)을 이용하여 치료계획을 설계하였다. 팬텀 내 측정지점인 방광(Bladder), 전립샘(Prostate), 직장 위벽(Rectal anterior wall), 직장 아래벽(Rectal posterior wall)의 임의의 지점에 모스펫검출기(Metal OXIDE Silicon Field Effect Transistor, MOSFET)를 위치시켜 선량 측정값과 치료계획을 비교분석 하였다. 결 과 : 전립샘과 직장풍선의 환자체적은 각각 30.61 cc, 52.19 cc 이고, 팬텀체적은 31.12 cc, 53.52 cc로 각 체적의 차이는 3% 미만으로 확인되었다. 모스펫검출기의 정밀도는 3%이내로 측정되었고 선량의 변화에 따라 상관계수 R2 = 0.99 ~ 1.00 의 선형성을 보였다. 네 곳의 측정 지점을 치료계획된 선량과 비교한 결과 방광 1.4%, 전립샘 2.6%, 직장 위벽 3.7%, 직장 아래벽 1.5%로 나타났고 모스펫검출기의 정밀도를 고려한 선량측정의 정확성은 5% 이내로 평가되었다. 결 론 : 본 실험을 통해 3D 프린터를 이용하여 제작한 전립샘 부위 팬텀은 체적의 차이 3% 미만으로, 인체를 모사하는데 효과적으로 사용될 수 있음을 확인하였다. 제작된 팬텀을 이용한 생체내선량측정은 모스펫검출기의 정밀도를 고려하더라도 방광, 전립샘, 직장 위벽, 직장 아래벽의 모든 측정점에서 5% 이내의 정확도로 수행 할 수 있었다. 따라서 3D 프린트를 이용해 제작된 전립샘 부위 팬텀은 생체선량측정을 하는데 있어 매우 유용하였으며 향후 환자에게 직접 적용하기 어려운 부위를 팬텀으로 대체 제작하여 생체내선량측정이 가능할 것으로 사료된다.

  • PDF

Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy

  • Lee, Soon Sung;Min, Chul Kee;Cho, Gyu Suk;Han, Soorim;Kim, Kum Bae;Jung, Haijo;Choi, Sang Hyoun
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.149-155
    • /
    • 2017
  • Radiotherapy patients should maintain their treatment position as patient setup is very important for accurate treatment. In this study, we evaluated patient setup error quantitatively according to Cone-Beam Computed Tomography (CBCT) Gamma Density Analysis using Mobius CBCT. The adjusted setup error to the $QUASAR^{TM}$ phantom was moved artificially in the superior and lateral direction, and then we acquired the CBCT image according to the phantom setup error. To analyze the treatment setup error quantitatively, we compared values suggested in the CBCT system with the Mobius CBCT. This allowed us to evaluate the setup error using CBCT Gamma Density Analysis by comparing the planning CT with the CBCT. In addition, we acquired the 3D-gamma density passing rate according to the gamma density criteria and phantom setup error. When the movement was adjusted to only the phantom body or 3 cm diameter target inserted in the phantom, the CBCT system had a difference of approximately 1 mm, while Mobius CBCT had a difference of under 0.5 mm compared to the real setup error. When the phantom body and target moved 20 mm in the Mobius CBCT, there are 17.9 mm and 13.5 mm differences in the lateral and superior directions, respectively. The CBCT gamma density passing rate was reduced according to the increase in setup error, and the gamma density criteria of 0.1 g/cc/3 mm has 10% lower passing rate than the other density criteria. Mobius CBCT had a 2 mm setup error compared with the actual setup error. However, the difference was greater than 10 mm when the phantom body moved 20 mm with the target. Therefore, we should pay close attention when the patient's anatomy changes.