• Title/Summary/Keyword: Medical electronics

Search Result 1,048, Processing Time 0.033 seconds

Deformable Registration for MRI Medical Image

  • Li, Binglu;Kim, YoungSeop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2019
  • Due to the development of medical imaging technology, different imaging technologies provide a large amount of effective information. However, different imaging method caused the limitations of information integrity by using single type of image. Combining different image together so that doctor can obtain the information from medical image comprehensively. Image registration algorithm based on mutual information has become one of the hotspots in the field of image registration with its high registration accuracy and wide applicability. Because the information theory-based registration technology is not dependent on the gray value difference of the image, and it is very suitable for multimodal medical image registration. However, the method based on mutual information has a robustness problem. The essential reason is that the mutual information itself is not have enough information between the pixel pairs, so that the mutual information is unstable during the registration process. A large number of local extreme values are generated, which finally cause mismatch. In order to overcome the shortages of mutual information registration method, this paper proposes a registration method combined with image spatial structure information and mutual information.

A Study on 3Dimensional Automatic Boundaries Detection on Medical Images or Radiation Therapy Planning (방사선 치료 계획 장치를 위한 의료 영상의 3차원적 자동 경계선 검출에 관한 연구)

  • Choi, Eun-Jin;Suh, Doug-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.172-175
    • /
    • 1997
  • Outline contour is detected firstly to simulate dose distribution in radiation therapy planning system. In this paper, we developed automatic contour detection system using temporal and spatial relationships of image sequences. The low level image analysis involves the use of directional gradient edge operators and Laplacian operator. The High level portion of algorithm uses a knowledge-based strategy that incorporates fuzzy resoning method.

  • PDF

Factors affecting real-time evaluation of muscle function in smart rehab systems

  • Hyunwoo Joe;Hyunsuk Kim;Seung-Jun Lee;Tae Sung Park;Myung-Jun Shin;Lee Hooman;Daesub Yoon;Woojin Kim
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.603-614
    • /
    • 2023
  • Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.

A Study on the Hermetic Method for Packaging of Implantable Medical Device (생체 이식형 의료기기의 패키징을 위한 완전 밀폐 방법에 관한 연구)

  • Park, Jae-Soon;Kim, Sung-Il;Kim, Eung-Bo;Kang, Young-Hwan;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.407-412
    • /
    • 2017
  • This paper introduces a biocompatible packaging system for implantable medical device having a hermetic sealing, such that a perfect physical and chemical isolation between electronic medical system and human body (including tissue, body fluids, etc.) is obtained. The hermetic packaging includes an electronic MEMS pressure sensor, power charging system, and bluetooth communication system to wirelessly measure variation of capacitance. The packaging was acquired by Quartz direct bonding and $CO_2$ laser welding, with a size of width $ 6cm{\times}length\;10cm{\times}lheight\;3cm$. Hermetic sealing of the packaged system was tested by changing the pressure in a hermetic chamber using a precision pressure controller, from atmospheric to 900 mmHg. We found that the packaged system retained the same count or capacitance values with sensor 1 - 25,500, sensor 2 - 26,000, and sensor 3 - 20,800, at atmospheric as well as 900 mmHg pressure for 5 hours. This result shows that the packaging method has perfect hermetic sealing in any environment of the human body pressure.

Design of a Dual-Band On-Body Antenna for a Wireless Medical Repeater System (의료용 무선 중계 시스템용 이중 대역 인체 부착형 안테나 설계)

  • Kwon, Kyeol;Tak, Jinpil;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.239-246
    • /
    • 2013
  • In this paper, a dual-band on-body antenna operating at MICS and ISM band for a wireless medical repeater system is proposed and the antenna performance including the human body effect is investigated. The designed dual-band antenna is comprised of a top patch for ISM band and bottom patch for MICS band. Simulation and measurement was carried out in order to analyze the effects of human body on antenna performance considering real use. The proposed antenna has required impedance bandwidth enough to cover both MICS and ISM bands. The measured peak gains were -12.47 dBi and 1.71 dBi at the each center frequency of MICS and ISM bands, respectively. Furthermore, the antenna has the maximum radiation directed toward the inside of the human body in the MICS band and directed toward the outside in the ISM band. In addition, the return loss property of the antenna is insensitive to human body effects so that the proposed antenna is well suited for the on-body wireless medical repeater system.

A Method of Effective Bits Reduction based on Human Perception in Medical Image (의료 영상에서 인간 지각 특성을 이용한 효과적인 비트수 줄임 방법)

  • 한재성;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.221-224
    • /
    • 2003
  • Recently, TFT-LCD is widely used of medicine machine on the display devices. However, the display precision of TFT-LCD is 8 bits instead of 10 bits of CRT display. If the medical image have more than 8 bits, we must requantize the medical image. We propose an efficient method to reduce medical image from 10 bits into 8 bits by employing human visual perception. The proposed method shows good performance for the medical image display.

  • PDF

Semi-Automated Image Processing System for Medical Images (의료영상 반자동화 영상처리 시스템)

  • 최우영;서명환;유돈식;윤재훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.225-228
    • /
    • 2003
  • The purpose of this paper is to develop a semi -automated system for medical image processing with which tissues or organs from medical images can be segmented and classified by people who have basic knowledge of image processing. In addition, the proposed medical image processing system is independent on types of human tissues or images. In this paper, a new semi-automated image processing system with essential image processing functions for medical images is introduced

  • PDF