• Title/Summary/Keyword: Medical Sensor Networks

Search Result 77, Processing Time 0.026 seconds

Symptom Pattern Classification using Neural Networks in the Ubiquitous Healthcare Environment with Missing Values (손실 값을 갖는 유비쿼터스 헬스케어 환경에서 신경망을 이용한 에이전트 기반 증상 패턴 분류)

  • Salvo, Michael Angelo G.;Lee, Jae-Wan;Lee, Mal-Rey
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.129-142
    • /
    • 2010
  • The ubiquitous healthcare environment is one of the systems that benefit from wireless sensor network. But one of the challenges with wireless sensor network is its high loss rates when transmitting data. Data from the biosensors may not reach the base stations which can result in missing values. This paper proposes the Health Monitor Agent (HMA) to gather data from the base stations, predict missing values, classify symptom patterns into medical conditions, and take appropriate action in case of emergency. This agent is applied in the Ubiquitous Healthcare Environment and uses data from the biosensors and from the patient’s medical history as symptom patterns to recognize medical conditions. In the event of missing data, the HMA uses a predictive algorithm to fill missing values in the symptom patterns before classification. Simulation results show that the predictive algorithm using the HMA makes classification of the symptom patterns more accurate than other methods.

An Improved ID-based Anonymous Authentication Scheme for Wireless Body Area Networks (WBAN 환경에서의 개선된 ID 기반 익명 인증 기법)

  • Jeong, Min-Soo;Suk, Jae Hyuk;Lee, Dong Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.322-332
    • /
    • 2017
  • Wireless Body Area Networks is an environment that provides an appropriate service remotely by collecting user's biometric information. With the growing importance of sensor, WBAN also attracts extensive attention. Since WBAN is representatively used in the medical field, it can be directly related to the patient's life. Hence security is very important in WBAN. Mutual authentication between the client and the application provider is essential. And efficiency is also important because a used device is limited to computation cost. In this reason, ID-based anonymous authentication scheme in WBAN has been intensively studied. We show that the recent research result of Wu et al. which is about the ID-based anonymous authentication scheme is vulnerable to impersonation attack. And we propose a new ID-based anonymous authentication scheme that is secure against the attacks discovered in the existing schemes. Compared to the existing schemes, the computation cost of our scheme is improved by 30.6% and 7.3%.

A new Network Coordinator Node Design Selecting the Optimum Wireless Technology for Wireless Body Area Networks

  • Calhan, Ali;Atmaca, Sedat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1077-1093
    • /
    • 2013
  • This paper proposes a new network coordinator node design to select the most suitable wireless technology for WBANs by using fuzzy logic. Its goal is to select a wireless communication technology available considering the user/application requirements and network conditions. A WBAN is composed of a set of sensors placed in, on, or around human body, which monitors the human body functions and the surrounding environment. In an effort to send sensor readings from human body to medical center or a station, a WBAN needs to stay connected to a local or a wide area network by using various wireless communication technologies. Nowadays, several wireless networking technologies may be utilized in WLANs and/or WANs each of which is capable of sending WBAN sensor readings to the desired destination. Therefore, choosing the best serving wireless communications technology has critical importance to provide quality of service support and cost efficient connections for WBAN users. In this work, we have developed, modeled, and simulated some networking scenarios utilizing our fuzzy logic-based NCN by using OPNET and MATLAB. Besides, we have compared our proposed fuzzy logic based algorithm with widely used RSSI-based AP selection algorithm. The results obtained from the simulations show that the proposed approach provides appropriate outcomes for both the WBAN users and the overall network.

Design and Implementation of u-Healthcare SensorGrid Gateway for connecting Sensor Network and Grid Network (센서 네트워크와 그리드 네트워크와의 연동을 위한 u-Healthcare 센서그리드 게이트웨이 설계 및 구현)

  • Oh, Se-Jin;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.64-72
    • /
    • 2008
  • Researchers nowadays are trying to implement u-Healthcare (ubiquitous Healthcare) systems for real-time monitoring and analysis of patients' status through a low-cost and low-power wireless sensor network. u-Healthcare system has an aim to provide reliable and fast medical services for patients regardless of time and space by transmitting to doctors a large quantity of vital signs collected from sensor networks. Existing u-Healthcare systems can merely monitor patients' health status. However, it is not easy to derive physiologically meaningful results by analyzing rapidly vital signs through the existing u-Healthcare systems. We introduce a Grid computing technology for deriving the results by analyzing rapidly the vital signs collected from the sensor network. Since both sensor network and Grid computing use different protocols, a gateway is needed. In addition, we also need to construct a gateway which includes the functions such as an efficient management and control of the sensor network, real-time monitoring of the vital signs and communication services related to the Grid network for providing u-Healthcare services effectively. In this paper, to build an advanced u-Healthcare system by using these two technologies most efficiently, we design and present the results to implement a SensorGrid gateway which connects transparently the sensor network and the grid network.

A Study on a Visible Light Communication using LED in Under-water Environment (LED조명을 이용한 수중환경에서의 VLC 연구)

  • Jung, Hui-Sok;Yang, Yeon-Mo;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • LED(Light Emitting Diode) components have advantages of longer lifetime, lower power consumption and easy-to-control, compare to normal lamp and fluorescent light, according to the development of recent technologies. Thus, lots of illuminations which utilize LED components could be used. Recently, Visible Light Communication(VLC) which is a part of communication technologies, utilizing high speed response characteristic of LED components, started receiving public attention. In case of VLC, there is no need of frequency allocation due to no use of radio, but also no interference exists during data transmission, much different in ISM((Industrial Scientific Medical band). This is the reason why a lot of research results about VLC are becoming issued. In this paper, a survey of feasibility for using VLC utilizing an original LED illumination for underwater applications has been done and a primitive possibility of its application has been examined.

Design and Implementation of an Ontology-based Context-Aware Platform for Home Healthcare (홈 헬스케어를 위한 온톨로지 기반 상황인지 플랫폼의 설계 및 구현)

  • Jo, Jung Won;Cha, Si Ho;Ahn, Byung Ho;Cho, Kuk Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2009
  • This paper proposes an ontology-based context-aware home healthcare platform employing environmental factors obtained from home. The proposed platform manages the health of home residents, and notifies relatives or a medical team of critical condition through context-awareness based on home ontology by using information sensed from various sensors. The ontology definition of context-awareness from the sensed information provides technically more precise decision for us. Therefore the platform can be aware of the health state of residents and environment by reasoning exactly from data gathered from various sensors and heterogeneous devices. The platform also can individually provide the customized service for users by setting priority for critical status that can be occurred in the health state of residents.

A Study on Monitoring of Bio-Signal for u-Health System (u-Health System을 위한 생체신호 모니터링에 관한 연구)

  • Han, Young-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • U-healthcare system has an aim to provide reliable and fast medical services for patient regardless of time and space by transmitting to doctors a large quantity of vital signs collected from sensor networks. Existing u-healthcare systems can merely monitoring patients' health status. In this paper, we describe the implementation and validation of a prototype of a u-health monitoring system based on a wireless sensor network. This system is easy to derive physiologically meaningful results by analyzing rapidly vital signs. The monitoring system sends only the abnormal data of examinee to the service provider. This technique can reduces the wireless data packet overload between a monitoring part and service provider. The real-time bio-signal monitoring system makes possible to implement u-health services and improving efficiency of medical services.

Efficient Scheduling of Sensor-based Elevator Systems in Smart Buildings (스마트 빌딩을 위한 센서 기반의 효율적인 엘리베이터 스케줄링)

  • Bahn, Hyokyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.367-372
    • /
    • 2016
  • In a modern smart building, sensors can detect various physical conditions, such as temperature, humidity, sound, motion, and light, which can be used in medical services and security, and for energy savings. This paper presents an efficient elevator scheduling system that utilizes smart sensor technologies with radio-frequency identification, video, and floor sensors to detect the arrival of elevator users in advance. The detected information is then delivered to the elevator scheduling system via building networks. By using this information, the proposed system makes a reservation call for efficient control of the elevator's direction and time. Experiments under a spectrum of traffic conditions show that the proposed system performs better than a legacy system with respect to average wait time, maximum wait time, and energy consumption.

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

A Mrthod on the Design of Sensor Network for the Surrounding Safety Using Drones (드론을 활용한 주변 안전을 위한 센서 네트워크 구성 방안)

  • Hong, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.667-669
    • /
    • 2021
  • Recently, RFID/USN technology has been applied in various fields such as logistics, environment, education, home network, disaster prevention, military, and medical care, but despite the remarkable development of RFID/USN technology, it is difficult to apply it to marine industry due to the characteristics of poor marine environment. Therefore, satellites are mainly used in the marine sector, and existing communication networks are used in the coast, so measures for forming a shelf-only short-range network in the ocean are being considered. In this paper, we consider the use of drones as mobile base stations of USN as a base station role using USN in existing PS-LTE and LTE networks.Since autonomous navigation vessels are aiming for the intelligent system, the number of crew and labor force should be reduced and the function of autonomous network formation in the form of more stable and intelligent ICT convergence technology should be strengthened.

  • PDF