• Title/Summary/Keyword: Medical IT convergence

Search Result 1,122, Processing Time 0.029 seconds

Research on the impact factors of smartphone medical APP user experience - centered on Chinese medical APP (스마트폰 의료 앱 사용자 체험의 영향 요인에 관한 연구 - 중국 의료 앱을 중심으로)

  • Zhang, Zhuo;Jang, Chung-Gun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.125-133
    • /
    • 2021
  • With the advent of experience era, the user experience has attracted much attention in all walks of life. And the importance of user experience emphasize began to be emphasized. It analyzed the interfering factors of user experience of smart phone medical APP, and evaluated their relative importance. Then it made suggestions on the priority of medical APP development and provided reference for medical APP design optimization and service quality improvement. First of all, based on the related research about user experience theory, smartphone APP user experience and mobile medical APP, it summarized the user experience elements of smartphone medical APP. Secondly, 200 subjects in the 20-40 age group who chose smartphone download experience and used medical APP were surveyed to rate the effect of 18 factors. The results show that the factors such as product resources, medical advertising recommendations, doctor-patient interaction, emotional pleasure, easy to learn, and other factors have a significant impact on users' good experience when using app.

An Efficient Personal Information Collection Model Design Using In-Hospital IoT System (병원내 구축된 IoT 시스템을 활용한 효율적인 개인 정보 수집 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.140-145
    • /
    • 2019
  • With the development of IT technology, many changes are taking place in the health service environment over the past. However, even if medical technology is converged with IT technology, the problem of medical costs and management of health services are still one of the things that needs to be addressed. In this paper, we propose a model for hospitals that have established the IoT system to efficiently analyze and manage the personal information of users who receive medical services. The proposed model aims to efficiently check and manage users' medical information through an in-house IoT system. The proposed model can be used in a variety of heterogeneous cloud environments, and users' medical information can be managed efficiently and quickly without additional human and physical resources. In particular, because users' medical information collected in the proposed model is stored on servers through the IoT gateway, medical staff can analyze users' medical information accurately regardless of time and place. As a result of performance evaluation, the proposed model achieved 19.6% improvement in the efficiency of health care services for occupational health care staff over traditional medical system models that did not use the IoT system, and 22.1% improvement in post-health care for users who received medical services. In addition, the burden on medical staff was 17.6 percent lower on average than the existing medical system models.

Development of WMTS Module Based Pulse Rate Period Detection and Human Sensibility Evaluation System (WMTS 무선통신 모듈을 이용한 맥파의 주기검출 및 감성평가 시스템 개발)

  • Lee, Hyun-Min;Kim, Dong-Jun;Jeon, Ki-Man;Son, Jae-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.811-817
    • /
    • 2013
  • In this study we present a system for pulse-rate period detection and human sensibility evaluation based on the wireless medical telemetry service (WMTS) used for transmission of data from medical telemetry devices to various medical facilities and services. We develop a medical-purpose specific WMTS communication module to transmit biometric signals. From the pulse rate variability(PRV) signal, we attempt to classify positive and negative emotional states based on analysis of the ratio of LF/HF in the frequency domain. We measure the data reception rate according to distance in order to test the performance of the WMTS module and analyze the effects on human sensibility evaluation.

Cilostazol attenuates kainic acid-induced hippocampal cell death

  • Park, Young-Seop;Jin, Zhen;Jeong, Eun Ae;Yi, Chin-ok;Lee, Jong Youl;Park, In Sung;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Cilostazol is a selective inhibitor of type 3 phosphodiesterase (PDE3) and has been widely used as an antiplatelet agent. Cilostazol mediates this activity through effects on the cyclic adenosine monophosphate (cAMP) signaling cascade. Recently, it has attracted attention as a neuroprotective agent. However, little is known about cilostazol's effect on excitotoxicity induced neuronal cell death. Therefore, this study evaluated the neuroprotective effect of cilostazol treatment against hippocampal neuronal damage in a mouse model of kainic acid (KA)-induced neuronal loss. Cilostazol pretreatment reduced KA-induced seizure scores and hippocampal neuron death. In addition, cilostazol pretreatment increased cAMP response element-binding protein (CREB) phosphorylation and decreased neuroinflammation. These observations suggest that cilostazol may have beneficial therapeutic effects on seizure activity and other neurological diseases associated with excitotoxicity.

Medical Image Authentication over Public Communication Networks using Secret Watermark

  • Oh Keun-Tak;Kim Young-Ho;Lee Yun-Bae
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.167-171
    • /
    • 2004
  • The evolution of modern imaging modalities, followed by the rapid development of computer technology has introduced many new features in the communication networks used in medical facilities. Since it is very important to keep patient's record accurately, the ability to exchange medical data securely over the communication network is essential for any medical information. In this paper, therefore, we introduce some problems which occur from digitizing medical images such as MRI (Magnetic Resonance Imaging), CT (Computed Tomography), CR(Computed Radiography), etc., and then we propose a authentication mechanism for medical image verification using secret watermark images.

A Trusted Sharing Model for Patient Records based on Permissioned Blockchain

  • Kim, Kyoung-jin;Hong, Seng-phil
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.75-84
    • /
    • 2017
  • As there has been growing interests in PHR-based personalized health management project, various institutions recently explore safe methods of recording personal medical and health information. In particular, innovative medical solution can be realized when medical researchers and medical service institutes can generally get access to patient data. As EMR data is extremely sensitive, there has been no progress in clinical information exchange. Moreover, patients cannot get access to their own health data and exchange it with researchers or service institutions. It can be operated in terms of technology, yet policy environment are affected by state laws as well as Privacy and Security Policy. Blockchain technology-independent, in transaction, and under test-is introduced in the medical industry in order to settle these problems. In other words, medical organizations can grant preliminary approval on patient information exchange by using the safely encrypted and distributed Blockchain ledger and can be managed independently and completely by individuals. More apparently, medical researchers can gain access to information, thereby contributing to the scientific advance in rare diseases or minor groups in the world. In this paper, we focused on how to manage personal medical information and its protective use and proposes medical treatment exchange system for patients based on a permissioned Blockchain network for the safe PHR operation. Trusted Model for Sharing Medical Data (TMSMD), that is proposed model, is based on exchanging information as patients rely on hospitals as well as among hospitals. And introduce medical treatment exchange system for patients based on a permissioned Blockchain network. This system is a model that encrypts and records patients' medical information by using this permissioned Blockchain and further enhances the security due to its restricted counterfeit. This provides service to share medical information uploaded on the permissioned Blockchain to approved users through role-based access control. In addition, this paper presents methods with smart contracts if medical institutions request patient information complying with domestic laws by using the distributed Blockchain ledger and eventually granting preliminary approval for sharing information. This service will provide an independent information transaction and the Blockchain technology under test will be adopted in the medical industry.

Efficient Patient Information Transmission and Receiving Scheme Using Cloud Hospital IoT System (클라우드 병원 IoT 시스템을 활용한 효율적인 환자 정보 송·수신 기법)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • The medical environment, combined with IT technology, is changing the paradigm for medical services from treatment to prevention. In particular, as ICT convergence digital healthcare technology is applied to hospital medical systems, infrastructure technologies such as big data, Internet of Things, and artificial intelligence are being used in conjunction with the cloud. In particular, as medical services are used with IT devices, the quality of medical services is increasingly improving to make them easier for users to access. Medical institutions seeking to incorporate IoT services into cloud health care environment services are trying to reduce hospital operating costs and improve service quality, but have not yet been fully supported. In this paper, a patient information collection model from hospital IoT system, which has established a cloud environment, is proposed. The proposed model prevents third parties from illegally eavesdropping and interfering with patients' biometric information through IoT devices attached to the patient's body at hospitals in cloud environments that have established hospital IoT systems. The proposed model allows clinicians to analyze patients' disease information so that they can collect and treat diseases associated with their eating habits through IoT devices. The analyzed disease information minimizes hospital work to facilitate the handling of prescriptions and care according to the patient's degree of illness.

A Study of Computer-aided Detection System for Dental Cavity on Digital X-ray Image (디지털 X선 영상을 이용한 치아 와동 컴퓨터 보조 검출 시스템 연구)

  • Heo, Chang-hoe;Kim, Min-jeong;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1424-1429
    • /
    • 2016
  • Segmentation is one of the first steps in most diagnosis systems for characterization of dental caries in an early stage. The purpose of automatic dental cavity detection system is helping dentist to make more precise diagnosis. We proposed the semi-automatic method for the segmentation of dental caries on digital x-ray images. Based on a manually and roughly selected ROI (Region of Interest), it calculated the contour for the dental cavity. A snake algorithm which is one of active contour models repetitively refined the initial contour and self-examination and correction on the segmentation result. Seven phantom tooth from incisor to molar were made for the evaluation of the developed algorithm. They contained a different form of cavities and each phantom tooth has two dental cavities. From 14 dental cavities, twelve cavities were accurately detected including small cavities. And two cavities were segmented partly. It demonstrates the practical feasibility of the dental lesion detection using Computer-aided Detection (CADe).

A Study on the Improvement of Personal Information Protection in Small and Medium-sized Medical Institutions (중소형 의료기관의 개인정보 보안실태 및 개선방안)

  • Shin, Min ji;Lee, Chang Moo;Cho, Sung Phil
    • Convergence Security Journal
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2019
  • Rapid developments of IT technology has been creating new security threats. There have been more attacks to get patients' sensitive personal information, targeting medical institutions that are relatively insufficient to prevent and defend against such attacks. Although the government has required senior general hospitals to get the ISMS certification since 2016, such a requirement has been burdensome for small and medium-sized medical institutions. Therefore, this study was designed to draw measures to identify and improve the privacy status of the medical institution by dividing it into management, physical and cyber areas for small and medium-sized medical institutions. The results of this study showed that the government should provide financial support and managerial supervision for the improvement of personal information protection of small and medium-sized medical institutions. They also suggested that the government should also provide medical security specialists, continuous medical security education, disaster planning, reduction of medical information management regulations not suitable for small and medium sized institutions.