• Title/Summary/Keyword: Medical Diagnostic Image

Search Result 404, Processing Time 0.025 seconds

Utility of Nuclear Morphometry in Effusion Cytology

  • Ambroise, Marie Moses;Jothilingam, Prabhavati;Ramdas, Anita
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6919-6922
    • /
    • 2014
  • Background: The cytological analysis of serous effusions is a common investigation and yields important diagnostic information. However, the distinction of reactive mesothelial cells from malignant cells can sometimes be difficult for the cytopathologist. Hence cost-effective ancillary methods are essential to enhance the accuracy of cytological diagnosis. The aim of this study was to examine the utility of nuclear morphometry in differentiating reactive mesothelial cells from malignant cells in effusion smears. Materials and Methods: Sixty effusion smears consisting of 30 effusions cytologically classified as malignant (adenocarcinomas) and 30 benign effusions showing reactive mesothelial cells were included in the study. ImageJ was used to measure the nuclear area, perimeter, maximal feret diameter, minimal feret diameter and the circularity. A total of ten representative cells were studied in each case. Results: Significant differences were found between benign and malignant effusions for the nuclear area, perimeter, maximal feret diameter and minimal feret diameter. No significant difference was found for circularity, a shape descriptor. Receiver operating characteristic (ROC) curve analysis revealed that nuclear area, perimeter, maximal feret diameter, and minimal feret diameter are helpful in discriminating benign and malignant effusions. Conclusions: Computerised nuclear morphometry is a helpful ancillary technique to distinguish benign and malignant effusions. ImageJ is an excellent cost effective tool with potential diagnostic utility in effusion cytology.

Quality Control of Diagnostic X-ray Equipment in Medical Field (의료분야 진단용방사선발생장치의 품질관리)

  • Cho, Pyong-Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • The examination using diagnostic x-ray equipment is one of the most useful diagnostic equipment for identifying information in the human body in diagnostic radiology. For this reason, the number of examinations has recently increased a lot. Increasing the number of examinations will accelerate the aging of the device. In addition, this makes them aware of the importance of quality control for the diagnostic x-ray device. Particularly, in a diagnostic x-ray device, quality control refers to an act of always maintaining a certain level of image quality by identifying and correcting all problems that may lead to reduction of the diagnosis area in advance. Therefore, this study summarizes and reports general information about quality control in examinations using diagnostic x-ray equipment.

Computer-Aided Diagnosis in Chest CT (흉부 CT에 있어서 컴퓨터 보조 진단)

  • Goo, Jin Mo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.6
    • /
    • pp.515-521
    • /
    • 2004
  • With the increasing resolution of modern CT scanners, analysis of the larger numbers of images acquired in a lung screening exam or diagnostic study is necessary, which also needs high accuracy and reproducibility. Recent developments in the computerized analysis of medical images are expected to aid radiologists and other healthcare professional in various diagnostic tasks of medical image interpretation. This article is to provide a brief overview of some of computer-aided diagnosis schemes in chest CT.

The Study on Quantum Efficiency of $CaWO_4$ Screen with Diagnostic X-ray (진단 X선에 대한 $CaWO_4$ 증감지의 양자효율 연구)

  • Park, Ji-Koon;Kang, Sang-Sik;Jang, Gi-Won;Lee, Hung-Won;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.379-382
    • /
    • 2002
  • Lately, intensifying screen of the $CaWO_4$ is used to medical treatment and diagnosis of the image. In this paper, we investigated transmission fraction and mass attenuation coefficient of $CaWO_4$ screen about diagnostic x-ray of low energy using MCNP 4C code. Experimentally, for 0.9 mm-$CaWO_4$ screen, the absorbable rate of diagnostic x-ray is more than 95%. according to kVp, the experimental value of mass attenuation coefficient is in a1most agreement with an corrected estimate value of MCNP and the deviation of experimental values is less than ${\pm}7%$. Using the MCNP code through this paper, we can make an estimate of signal and design for construction of the CaWO4/a-Se based digital x-ray image detector and make a good use of the foundation data for development of other materials.

  • PDF

Terahertz (THz) imaging technology for therapeutic and diagnostic applications of cancer incorporating with radiopharmaceutical fields

  • Min, Sun-Hong;Cho, Ilsung;Park, Chawon;Jung, Wongyun;Hwang, Won Taek;Kim, Minho;Lee, Kyo Chul;Lee, Yong Jin;Lim, Sang Moo;Hong, Bong Hwan
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.120-128
    • /
    • 2019
  • Radiopharmaceuticals include therapeutic radiopharmaceuticals and diagnostic radiopharmaceuticals. Therapeutic radiopharmaceuticals are administered to the body and ingested at specific organs to detect radiation emitted from the site and to construct an image to diagnose the disease. Diagnostic radiopharmaceuticals are used to treat diseases by killing cells with radiation emitted from radiopharmaceuticals, such as cancer cells, vascular endothelial cells, arthritis, and Alzheimer's disease. The application possibilities of terahertz imaging technology for the combination of radiopharmaceuticals and molecular imaging medicine are discussed and experimental methods are presented. Terahertz imaging is expected to be a powerful technique because of the effective piercing feasibility, which enables to perform safe and high resolutive imaging. To investigate the response of cell to the terahertz wave, both the pulsed and CW THz wave systems are employed. THz imaging of a rat's paraffin-embedded epithelial cell with tumor is studied in advance.

Analysis of Image Factors of X-ray Films: Study for the Intelligent Replenishment System of Automatic Film Processor (자동현상기 지능화에 필요한 연산처리 기법의 개발을 위한 방사선 필름의 영상 지수의 분석)

  • Park, Sung-Tae;Yoon, Chong-Hyun;Park, Kwang-Bo;Auh, Yong-Ho;Lee, Hyoung-Jin;In, Kyung-Hwan;Kim, Keon-Chung
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • We analyzed image factors to determine the characteristic factors that need for intelligent replenishment system of the auto film processor. We processed the serial 300 sheets of radiographic films of chest phantom without replenishment of developing and fixation replenisher. We took the digital data by using film digitizer which scaned the films and automatically summed up the pixel values of the films. We analyzed characteristic curves, average gradients and relative speeds of individual film using densitometer and step densitometry. We also evaluated the pH of developer, fixer, and washer fluid with digital pH meter. Fixer residual rate and washing effect were measured by densitometer using the reagent methods. There was no significant reduction of the digital density numbers of the serial films without replenishment of developer and fixer. The average gradients were gradually decreased by 0.02 and relative speeds were also gradually decreased by 6.96% relative to initial standard step-densitometric measurement. The pHs of developer and fixer were reflected the inactivation of each fluid. The fixer residual rates and washing effects after processing each 25 sheets of films were in the normal range. We suggest that the digital data are not reliable due to limitation of the hardware and software of the film digitizer. We conclude that average gradient and relative speed which mean the film's contrast and sensitivity respectively are reliable factors for determining the need for the replenishment of the auto film processor. We need more study of simpler equations and programming for more intelligent replenishment system of the auto film processor.

  • PDF

Performance Test for Automatic Exposure Control by Zone System (Zone System을 이용한 자동노출장치의 성능 측정에 관한 실험)

  • Kang, Hee-Doo;Pyo, Chang-Gi;Cha, Jung-Hee;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 1998
  • AEC was designed to assist in the production of radiographs of equal density and to aid in the production f consistently high quality radiographs. Many improvements have been made in the AEC and these have helped to increase it's acceptance. Newer system (Falling load) control kVp and mA as well as exposure time. Authors have had experiments about the characteristics of AEC by Zone System. Zone System is the method to detection of photographic image qualify by control the photo print from Fred Archer and Ansel Adams. With the Zone System theory the experiments of density control, characteristics of phantom thickness and reproducibility of occupation rate of contrast media could make quality control of X-ray photography effectively in falling load system.

  • PDF

Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy

  • Pae Sun Suh;Ji Eun Park;Yun Hwa Roh;Seonok Kim;Mina Jung;Yong Seo Koo;Sang-Ahm Lee;Yangsean Choi;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.374-383
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learningbased image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). Materials and Methods: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. Results: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). Conclusion: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.