• Title/Summary/Keyword: Medical 3D printing

Search Result 124, Processing Time 0.027 seconds

Analysis of Chung-Buk Regional Industry Trends -Focused on Machinery Part Industry and Medial Instrument Industry (충북지역 특화산업 현황 분석 -기계부품(자동차), 의료기기산업을 중심으로)

  • Lee, Hyoung-wook;Seo, JunHyeok;Park, Sung-jun;Bae, Sungmin
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.41-46
    • /
    • 2016
  • Based on Regional Industry Development Plan in 2014, machinery part industry and medical instrument industry has been designated as core industries of Chung-buk area. Machinery part industry plays an important role in economic growth of chung-buk area and it has been faced with signigicant changes - such as SMART factory and IoT(Internet of things). Also, medical instrument industry with 3D printing technology grows rapidly in Chung-buk area. It is believed that medical instrument could be next cash-cow items for Chung-buk area. In this paper, we survey, analyze and summarize the current machinery part industry and medical instrument industry focused on Chunk-buk Area.

A Study on the Usefulness of Copper Filter in Single X-ray Whole Spine Lateral using 3D Printer (단일조사 whole spine Lateral 검사에서 3D 프린터로 제작한 구리 필터 유용성 연구)

  • Kwon, Kyung-Tae;Yoon, Dayeon;Shin, Rae-Un;Han, Bong-Ju;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.899-906
    • /
    • 2020
  • The WSS lateral examination is important for diagnosing spinal disorders. Recently, long-length detectors for large-area diagnose have been popularized to effectively reduce the exposure dose and examination time. It can be applied very efficiently to examinations of patients with high risk of falls, children, and adolescents. However, since the image is acquired through a single irradiation, the volume of cervical vertebra is relatively smaller than the lumbar due to the geometrical anatomy of the spine. Therefore, this study intends to fabricate an additional filter using 3D printing technology and copper filament to obtain uniform image quality in the WSS lateral examination and to analyze the results. 3D printing technology is able to easily print a desired shape, so it is widely used in the entire industrial field, and recently, a copper filament has been developed to confirm the possibility as an additional filter. In the WSS lateral examination, CNR and SNR were excellently measured when the additional filter was applied, confirming the possibility of using the additional filter.

Comparative Study of Sterilization by Gamma-ray and Electron-Beam (감마선, 전자선에 의한 멸균 비교분석)

  • Jeong, Kyeonghwan;Park, Changhee
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.537-543
    • /
    • 2020
  • The elderly population in the modern society is growing rapidly due to advance medical technology and minimally invasive surgery. Therefore, as the tendency to use medical device is increasing, pathogenic infection is a concern. Therefore, the first aim of modern medicine is infection prevention in medical place. Recently, patient implants are increasing using 3D printing. Hydroxyapatite is used as a representative material. And, there haven't had currently absorbed dose standard for sterilization of hydroxyapatite discs. Escherichia coli and Streptococcus mutans contaminated on the surface of hydroxyapatite discs were irradiated at each absorbed dose of 0, 0.5, 1.0, 3.0, 5.0 kGy using Gamma-ray of cobalt and Electron-beam of linear accelerator. Then, the number of bacteria was measured in the sample by the decimal dilution method. After sterilization, a non-parametric testing method was performed to compare the survival of Escherichia coli and Streptococcus mutans. As a result, Escherichia coli was sterilized at 1 kGy or more and Streptococcus mutans at 3 kGy or more on absorbed dose. It is considered possible to perform sterilization at a lower value than the recommended absorbed dose of radiation sterilization.

Development of the Upper Wear Fixation Device for Chest AP X-ray Imaging on the Emergency Stretcher Bed (응급실 침대 위 흉부전후방향 엑스선 검사를 위한 상의고정장치 개발)

  • Lim, Woo-Taek;Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.3
    • /
    • pp.205-211
    • /
    • 2022
  • This study aimed to provide basic data for 3D printing in the medical health field by developing upper wear fixation device (UWFD), an auxiliary device for shortening chest AP examination time on emergency room beds and non-contact with patients. The standard of hooks was modeled according to the bed frame using the Autodesk Fusion 360. It was printed with Form2 (Formlabs, Somerville, MA, USA), as SLA (stereo lithography apparatus) method, and was washed and hardened using Form Wash and Form Cure. The completed UWFD conducted an online survey on 4 items of stability, convenience, availability, preference and general characteristics. The total stability average was 3.93±0.80, the total convenience average was 3.93±0.68, the total availability average was 4.01±0.89, and the total preference average was 3.80±1.08. This study was significant in suggesting improvements in the general X-ray examination process in the emergency room by designing and making aids to easily fixing the patient's top to the frame of the emergency bed while meeting promptness and non-contact with the patient.

Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration

  • Lee, Jaeyeon;Lee, Se-Hwan;Kim, Byung Soo;Cho, Young-Sam;Park, Yongdoo
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • BACKGROUND: Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. METHODS: In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bio-active peptides and tyramine-conjugated hyaluronic acids for fast gelation. RESULTS: Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bio-ink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed >90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. CONCLUSION: We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.

A Study on the Usefulness of an Ankle Joint Examination Assistive Device using a 3D Printing (3D 프린터를 이용한 발목관절 검사 보조기구의 유용성연구)

  • Dong-Hee Hong;Eun-hye Kim;Young-Cheol Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1099-1108
    • /
    • 2023
  • The mortise view radiography procedure is an ankle joint examination and observes the presence of trauma, sprain, or dislocation suspected in the ankle joint. The auxiliary equipment used during the mortise view radiography procedure can generate artifacts in the radiograph images and is not diverse enough to be custom-made for each patient; not cost-efficient. The purpose of this study is to create a custom assistive device to support mortise view radiography procedure. This study utilized 3D printing technology to create the mortise view radiography procedure assistive device (ShinHan Device; SHD). The lengths of the tibiotalar joint (TTJ), talar calcaneal joint (TCJ), and medial joint (MJ) were measured and evaluated by five researchers using both SHD and the prototype Hologic tool. The mean ranges were found to be 39.42-39.47 mm for TTJ, 31.41-31.57 mm for TCJ, and 21.21-21.23 mm for MJ while using SHD device. On the other hand, the measurements showed mean ranges of 39.73-39.79 mm for TTJ, 31.46-31.50 mm for TCJ, and 21.31-21.35 mm for MJ while using the Hologic tool. Based on this study results, the error ranges at all positions decreased by 24% for TTJ, 17% for TCJ, and 36% for MJ when using SHD device compared to the Hologic tool. Moreover, when SHD was used, it allowed for a highly reproducible examination posture (ICC = 0.99), and it enabled the acquisition of radiograph images without artifacts, which were present in the Hologic tool.

Cytotoxicity(MTT) evaluation of dental instruments made of polymers (치과용 폴리머 기구의 세포독성(MTT) 평가)

  • Choi, Eun-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.187-195
    • /
    • 2021
  • In order to assess the cell toxicity of 10 instruments made of polymers, the MTT assay which utilizes the L-929 cell was selected. Specimens were eluted at a temperature of 37℃ for 24 hours at a rate of 4g per 20mL, RPMI 1640, and then was positively and negatively contrasted with a control test solution, in accordance with the Notification No. 2020-12 Protocols of Medical Apparatus Biological Safety from the Ministry of Drug and Food Safety. As a result of 24 hours of incubation in 37℃, 5% CO2 Incubator and assessment using an ELISA reader, the results of Intraoral camera indiciated a cellular viability of more than 70% at a 50% eluate. But, the Plastic impression tray, 3D printing tweezer, Impression disposable syringe, Dental floss holder, Hand implant scaler, Surgical retractor, Oral scanner tip, Dental mirror, and the Water pick tip all reported a cellular viability of more than 70% at a 100% eluate, which indicates that do not exhibit cytotoxicity, thus allowing it to be used in contact with the mucous membrane of the oral cavity.

3D-printed Face Shields for Healthcare Professionals Battling COVID-19 Pandemic

  • Kim, Gyeong-Man;Assefa, Dawit;Kang, Joon Wun;Gebreyouhannes, Esayas
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.226-237
    • /
    • 2020
  • As the number of reported COVID-19 cases rises around the world, regions affected by the virus are taking serious measures to contain its spread. Face shields are one of the highest-need personal protective equipment (PPE) during COVID-19 pandemic. Beyond traditional face masks, as known cases of the coronavirus soar, currently there is a significant shortage of face shields around the world. In response, the protective face shields were designed and fabricated with open-source 3D modelling software and 3D printing technology, respectively. Our face shield consisted of two parts only; a reusable 3D printed headband and a visor made of transparent plastic sheet, as barrier. The resulting 3D printed face shields are affordable, lightweight, one-size-fits-most and ready-to-wear with minimal assemblies, and go on easily over glass, goggle and face mask. To ensure being donated to the healthcare professionals without risk infected by any pathogens, the 3D printed face shields were successfully be disinfected with ultraviolet germicidal irradiation (UVGI dosage of 1000 mJ/cm2) and 70% alcohol. For routine disinfection a UVGI chamber was designed and optimized to provide uniform UV-C illumination with an appreciated fluence for complete decontamination. More than 1,000 face shields were produced already and donated to the special hospitals for COVID-19 patients, quarantines, government and medical agencies in Ethiopia as well as in East-African countries. With certainty, our intention goes beyond the hospitals and other first responders, but not limited for all those who have to stay in the service or be in contact with many other people in the time of COVID-19 pandemic.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

A Study on the Analysis of Radiation Dose for Thermoplastic Material and 3D Print Filament Materials (열가소성 플라스틱 재질과 3D 프린트 필라멘트 재질에 대한 방사선량 분석에 관한 연구)

  • Lee, Dong-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • This study is a prior research to manufacture a thermoplastic mask, which is a fixture used in radiation therapy, by 3D printing. It proceeded to analyze the filament material that can replace the thermoplastic. Among the commercially available filament materials, a material having similar characteristics to that of a thermoplastic mask was selected and the radiation dose was compared and analyzed. The experiment used Monte Carlo simulation. The shape in which the mask fixed the head was simulated for the ICRU sphere. The photon fluence was calculated at the skin Hp (0.07), the lens Hp (3), and the whole body Hp (10) by applying a thermoplastic plastic material and a filament material. As a result, when looking at the relative dose based on the thermoplastic plastic material, the difference was approximated within 4%. The material showing the most similar dose was PA-nylon. In selecting an appropriate filament material, it should be selected by comprehensively considering various conditions such as economical efficiency and radiation effects. It is thought that the results of this study can be used as basic data.