• Title/Summary/Keyword: Medical 3D printing

Search Result 127, Processing Time 0.023 seconds

Usefulness of Silicon Bolus Using 3D Printing of Head and Neck Patients (두경부 환자의 3D Printing을 이용한 Silicon Bolus의 유용성)

  • Kwon, Kyung-Tae;Lee, Yong-Ki;Won, Young-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.909-916
    • /
    • 2019
  • Radiation therapy of oral and head and neck cancers often involves skin in the therapeutic range, and the use of bolus is frequently used. Dose irregularities provide dose uncertainty in patient application. In this study, the physical properties of patients with gel bolus, poly lactic acid (PLA), and silicon using 3D printing were fabricated. Dose uncertainties arising from the actual radiation dose delivery were measured. As a result, PLA bolus was stable in the Common irregularities. Silicon bolus may be useful for patients with severe irregularities or frequent changes in patient's body shape.

Evaluation of the Effectiveness of 3D Printing Shielding Devices using Monte Carlo Simulation in Plain Radiography (일반영상 검사 시 몬테칼로 시뮬레이션을 이용한 3D 프린팅 차폐기구의 효용성 평가)

  • Cho, Yong In;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.303-311
    • /
    • 2020
  • Scattering-ray generated during plain radiography can cause secondary exposure to organs and tissues other than the target area. Currently, Shielding devices used to reduce radiation exposure are mostly used for radiation protection of workers, and radiation protection of patients is rarely performed. Therefore, this study intends to evaluate the organ dose by scattered-rays and the effectiveness 3D printing materials as a radiation shielding device during plain radiography through simulation. As a result, the absorbed dose for each organ at the time of examination showed a high effect due to the secondary scattering-ray as the distance from the source was close and the organ closer to the skin surface. The dose reduction effect due to the use of 3D printing shielding devices to protect this showed a higher shielding effect in the case of mixed printing materials compared to plastics.

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

Development of Conductive Polycaprolactone (PCL)-resin based on Reduced Graphene Oxide(rGO)/Polypyrrole (Ppy) composite for 3D-printing application (3D 프린팅 응용을 위한 환원그래핀/폴리피롤 복합체 기반의 전도성 폴리카프로락톤 레진의 개발)

  • Jeong, Hyeon Taek;Jung, Hwa Yong;Cho, Young Kwang;Kim, Chang Hyeon;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.935-939
    • /
    • 2018
  • 3D Printing technology is developing in various prototypes for medical treatment, food, fashion as well as machinery and equipment parts production. 3D printing technology is also able to fully be utilized to other industries in terms of developing its technology which has been reported in many field of areas. 3D printing technology is expected to be used in various applications related to $4^{th}$ industrial revolution such as finished products and parts even it is still carried out in the prototype model. In this study, we have investigated and developed conductive resin for 3d printing application based on reduced graphene oxide(rGO)/Polypyrrole(Ppy) composite and polycaprolactone(PCL) as a biodegradable polymer. The electrical properties and surface morphology of the conductive PCL resin based on therGO/Ppy composite were analyzed by 4point-probe and scanning electron microscope(SEM). The conductive PCL resin based on rGO/Ppy composite is expected to be applicable not only 3D printing, but also electronic materials in other industrial fields.

Dose rate measurement of Leksell Gamma Knife Perfexion using a 3D printed plastic scintillation dosimeter

  • Lee, Sangmin;Kim, Tae Hoon;Jeong, Jae Young;Son, Jaebum;Kim, Dong Geon;Cho, Gyu-Seok;Choi, Sang Hyoun;Chung, Hyun-Tai;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2334-2338
    • /
    • 2020
  • In recent years, 3D printing technology has received significant research attention. Additionally, 3D printing technology is being applied to study radiation dosimeters of various materials. In this study, a plastic scintillator for 3D printing was developed in a laboratory and used to manufacture a plastic scintillation dosimeter (PSD) with a shape identical to that of the ionization chamber PTW31010. The 16-mm beam of Gamma Knife® Perfexion™ was irradiated to derive the absorbed dose rates of the PSD and PTW31010; they were subsequently compared with the dose rates of the treatment plan. The differences in the dose rates of the Gamma Knife treatment plan and the absorbed dose rates of PTW31010 were within 0.87%. The difference between the dose rates of the Gamma Knife treatment plan and the absorbed dose rates of the PSD were within 4.1%. A linear fit of the absorbed dose rates of four shots involving different dose rates and irradiation angles yielded an adjusted R-square value exceeding 0.9999. A total of 10 repeated measurements were conducted for the same shot to confirm its reproducibility, with a relative error of 0.56%.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education (영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • In this study, human mimic phantoms outputted by three-dimensional (3D) printing technology are reported. Polylactic acid and a personal 3D printer - fused deposition modeling (FDM) - are used as the main material and the printing device. The output of human mimic phantoms performed in the following order: modeling, slicing and G-code conversion, output variable setting, 3D output, and post-processing. The students' learning satisfaction (anatomical awareness, study interest) was measured on 5-point Likert scale. After that, Twenty of those phantoms were outputted. The total output took 11,691 minutes (194 hours 85 minutes) and the average output took 584.55 minutes (9 hours 7 minutes). The filament used for the experiment was 2,390.2 g, and the average use of the filament was 119.51 g. The learning satisfaction of anatomical awareness was 4.6 points on the average and the interest of the class was on average 4.5 points. It is expecting that 3D printing technology can enhance the learning effect of imaging anatomy education.

The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner (SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구)

  • Min-Gyu Lee;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.